Difference between revisions of "ESR Lab Activity"

From MC Chem Wiki
Jump to navigation Jump to search
 
(23 intermediate revisions by 8 users not shown)
Line 33: Line 33:
 
===Beaker Method===
 
===Beaker Method===
 
*Solution A: 1 M NaOH; 1 gram NaOH (39.997 g/mol) into 25 mL EtOH.
 
*Solution A: 1 M NaOH; 1 gram NaOH (39.997 g/mol) into 25 mL EtOH.
*Solution B: 1 M hydroquinone solution.
+
*Solution B: 1 M hydroquinone solution; 1.1 gram HQ in 10 mL EtOH.
 
*Procedure: To 2 ml of 1 M hydroquinone solution add 2-3 drops of solution A. A color change will indicate the reaction has occurred. Quickly transfer colored sample to ESR sample tube, place in ESR spectrometer, tune, and collected data.
 
*Procedure: To 2 ml of 1 M hydroquinone solution add 2-3 drops of solution A. A color change will indicate the reaction has occurred. Quickly transfer colored sample to ESR sample tube, place in ESR spectrometer, tune, and collected data.
  
Line 49: Line 49:
  
 
==Results==
 
==Results==
===1-electron Oxidation of Hydroquinone====
+
===1-electron Oxidation of Hydroquinone===
  
  
Line 71: Line 71:
 
==Analysis==
 
==Analysis==
 
===WinSim===
 
===WinSim===
 +
====1-electron Oxidation of Hydroquinone====
 +
 +
[[File:hydrosemiquinone theoretical vs exp.png|500px]]
 +
 +
Hydrosemiquinone ESR spectrum (black) vs Winsim spectrum (red)
 +
 
===Gaussian Calculations===
 
===Gaussian Calculations===
  
Line 79: Line 85:
 
||HF/6311G+(2p,d)
 
||HF/6311G+(2p,d)
 
||B3LYP/6-31G
 
||B3LYP/6-31G
||
+
||B3LYP/3-21G
||
+
||B3LYP/6311G+(2p,d)
||
+
||HF/EPR-ii
||
+
||B3LYP/EPR-II
 
||
 
||
 
|-
 
|-
 
||8
 
||8
||
+
||12.605
||
+
||12.165
||
+
||0.26898
||
+
||1.10213
||
+
||0.85863
||
+
||0.52092
||
+
||10.405
||
+
||0.30942
 
||
 
||
 
|-
 
|-
 
||9
 
||9
||
+
||-14.289
||
+
||-14.332
||
+
||-0.18982
||
+
||-2.73487
||
+
||-2.67806
||
+
||-2.55611
||
+
||-12.281
||
+
||-2.45135
 
||
 
||
 
|-
 
|-
 
||11
 
||11
||
+
||-14.289
||
+
||-14.335
||
+
||-0.19007
||
+
||-4.10834
||
+
||-2.68141
||
+
||-2.55653
||
+
||-12.281
||
+
||-2.44583
 
||
 
||
 
|-
 
|-
 
||12
 
||12
||
+
||12.604
||
+
||12.167
||
+
||0.26907
||
+
||1.27101
||
+
||0.85927
||
+
||0.52095
||
+
||10.405
||
+
||0.30859
 
||
 
||
 
|-
 
|-
 
||19
 
||19
||
+
||12.604
||
+
||12.169
||
+
||21.28576
||
+
||1.27509
||
+
||0.85858
||
+
||0.52091
||
+
||10.405
||
+
||0.30943
 
||
 
||
 
|-
 
|-
 
||20
 
||20
||
+
||-14.289
||
+
||-14.339
||
+
||-24.52739
||
+
||-4.09995
||
+
||-2.67694
||
+
||-2.55567
||
+
||-12.281
||
+
||-2.45143
 
||
 
||
 
|-
 
|-
 
||22
 
||22
||
+
||-14.289
||
+
||-20.186
||
+
||-24.72440
||
+
||-2.74025
||
+
||-2.68052
||
+
||-2.55603
||
+
||-12.281
||
+
||-2.44580
 
||
 
||
 
|-
 
|-
 
||23
 
||23
||
+
||12.604
||
+
||12.171
||
+
||21.57883
||
+
||1.10424
||
+
||-0.58918
||
+
||0.52091
||
+
||10.405
||
+
||0.30858
 
||
 
||
 
|-
 
|-
 
||24
 
||24
||
+
||0.661
||
+
||0.796
||
+
||17.77623
||
+
||3.46774
||
+
||-0.22807
||
+
||-0.28092
||
+
||0.786
||
+
||-0.40397
 
||
 
||
 
|-
 
|-
 
||25
 
||25
||
+
||0.660
||
+
||0.796
||
+
||17.77641
||
+
||3.27784
||
+
||-0.22870
||
+
||-0.28078
||
+
||0.786
||
+
||-0.40384
 
||
 
||
 
|}
 
|}
 +
 +
[http://www.gaussian.com/g_tech/g_ur/m_basis_sets.htm Basis Sets]
  
 
==Conclusions==
 
==Conclusions==
 +
[[:File:ed066p263.pdf]]

Latest revision as of 22:42, 21 April 2022

Introduction

We are going to collect an ESR spectrum from a series of substituted hydroquinones.

Hydroquinones.png

Name SDS Molar Mass Sigma Product Number Cost
A = Hydroquinone (aka. 1,4-benzohydroquinone) SDS 110.11 g/mol H9003 22.90 / 100g
B = Methylhydroquinone SDS 124.14 g/mol 112968 59.20 / 250g
C = 2,3-dimethylhydroquinone SDS 138.16 g/mol 300756 118.00 / 5g

Experimental

Beaker Method

  • Solution A: 1 M NaOH; 1 gram NaOH (39.997 g/mol) into 25 mL EtOH.
  • Solution B: 1 M hydroquinone solution; 1.1 gram HQ in 10 mL EtOH.
  • Procedure: To 2 ml of 1 M hydroquinone solution add 2-3 drops of solution A. A color change will indicate the reaction has occurred. Quickly transfer colored sample to ESR sample tube, place in ESR spectrometer, tune, and collected data.

Flow Method

  • Solution A: 0.05 M NaOH; 0.05 grams NaOH (39.997 g/mol) into 25 ml EtOH.
  • Solution B: 1 M hydroquinone solution.
  • Procedure: Prepare two 60 ml syringes, 1 with solution A and 1 with solution B.
  • Degas the syringe that contains solution B
  • Attach to double syringe drive
  • Turn on double syringe drive that is attached to ESR
  • Collect data

Double syringe drive.jpg

Double Syringe Drive

Results

1-electron Oxidation of Hydroquinone

14BZQ.jpg


This is the EPR spectrum of the "hydro-semiquinone" (aka. 1,4-benzosemiquinone)

EPR Parameters: 9.4 GHz, 3360 G Center field, 15 G sweep width. [Above data needs the x-axis changed over to magnetic field in G]

1-electron Oxidation of Methylhydroquinone

EPR MeH2Q.jpg


This is the EPR spectrum of the "methyl-hydro-semiquinone" (aka. methyl-semiquinone)

EPR Parameters: 9.4 GHz, 3360 G Center field, 15 G sweep width. [Above data needs the x-axis changed over to magnetic field in G]

Analysis

WinSim

1-electron Oxidation of Hydroquinone

Hydrosemiquinone theoretical vs exp.png

Hydrosemiquinone ESR spectrum (black) vs Winsim spectrum (red)

Gaussian Calculations

Atom HF/3-21G HF/6-31G HF/6311G+(2p,d) B3LYP/6-31G B3LYP/3-21G B3LYP/6311G+(2p,d) HF/EPR-ii B3LYP/EPR-II
8 12.605 12.165 0.26898 1.10213 0.85863 0.52092 10.405 0.30942
9 -14.289 -14.332 -0.18982 -2.73487 -2.67806 -2.55611 -12.281 -2.45135
11 -14.289 -14.335 -0.19007 -4.10834 -2.68141 -2.55653 -12.281 -2.44583
12 12.604 12.167 0.26907 1.27101 0.85927 0.52095 10.405 0.30859
19 12.604 12.169 21.28576 1.27509 0.85858 0.52091 10.405 0.30943
20 -14.289 -14.339 -24.52739 -4.09995 -2.67694 -2.55567 -12.281 -2.45143
22 -14.289 -20.186 -24.72440 -2.74025 -2.68052 -2.55603 -12.281 -2.44580
23 12.604 12.171 21.57883 1.10424 -0.58918 0.52091 10.405 0.30858
24 0.661 0.796 17.77623 3.46774 -0.22807 -0.28092 0.786 -0.40397
25 0.660 0.796 17.77641 3.27784 -0.22870 -0.28078 0.786 -0.40384

Basis Sets

Conclusions

File:ed066p263.pdf