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Sunscreens Cause Coral Bleaching by Promoting Viral Infections
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BACKGROUND: Coral bleaching (i.e., the release of coral symbiotic zooxantheflae) has negative impacts
on biodiversity and functioning of reef ecosystems and their production of goods and services. This
increasing world-wide phenomenon is associated with temperature anomalies, high irradiance, pollu-
tion, and bacterial diseases. Recently, it has been demonstrated that personal care products, induding
sunscreens, have an impact on aquatic organisms similar to that of other contaminants.

OBJECTIVES: Our goal was to evaluate the potential impact of sunscreen ingredients on hard corals
and their symbiotic algae.

METHODS: In situ and laboratory experiments were conducted in several tropical regions (the
Atlantic, Indian, and Pacific Oceans, and the Red Sea) by supplementing coral branches with
aliquots of sunscreens and common ultraviolet filters contained in sunscreen formula.
Zooxanthellae were checked for viral infection by epifluorescence and transmission electron
microscopy analyses.

RESULTS: Sunscreens cause the rapid and complete bleaching of hard corals, even at extremely low
concentrations. The effect of sunscreens is due to organic ultraviolet filters, which are able to
induce the lyric viral cycle in symbiotic zooxanthellae with latent infections.

CONCLUSIONS: We conclude that sunscreens, by promoting viral infection, potentially play an
important role in coral bleaching in areas prone to high levels of recreational use by humans.
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Coral reefs are among the most biologically
productive and diverse ecosystems in the
world, representing hot spots of marine biodi-
versity, and directly sustaining half a billion
people (Moberg and Folke 1999; Wilkinson
2004). Approximately 60% of coral reefs are
currently threatened by several natural and
anthropogenic impacts (Hughes et al. 2003;
Pandolfi et al. 2003). Over the last 20 years,
massive coral bleaching (i.e., loss of symbiotic
zooxanthellae hosted within scleractinian
corals) has increased dramatically, both in fre-
quency and spatial extent (Hoegh-Guldberg
1999; Hughes et al. 2003; Knowlton 2001).
This phenomenon has been associated with
positive temperature anomalies, excess ultravi-
olet (UV) radiation or altered available photo-
synthetic radiation, and presence of bacterial
pathogens and pollutants (Brown et al. 2000;
Bruno et al. 2007; Douglas 2003; Glynn
1996; Jones 2004).

Production and consumption of personal
care and cosmetic sun products are increasing
worldwide, reaching unexpected levels, with
potentially important consequences on envi-
ronmental contamination. The release of
these products is also linked with the rapid
expansion of tourism in marine coastal areas
(Wilkinson 2004). Chemical compounds
contained in sunscreens and other personal
care products have been demonstrated to
reach detectable levels in both fresh and sea-
water systems (Daughton and Ternes 1999;
Giokas et al. 2007). These compounds are
expected to be potentially harmful for the

environment; hence, the use of sunscreen
products is now banned in a few popular
tourist destinations, for example, in marine
ecoparks in Mexico, and in some semi-
enclosed transitional systems (Xcaret 2007;
Xel-ha 2007). Because sunscreens are lipo-
philic, their UV filters can bioaccumulate in
aquatic animals (Giokas et al. 2007) and
cause effects similar to those reported for
other xenobiotic compounds (Balmer et al.
2005; Daughton and Ternes 1999). Paraben
preservatives and some UV absorbers con-
tained in sunscreens have estrogenic activity
(Daughton and Ternes 1999; Schlumpf et al.
2004). In addition it has been demonstrated
that several sunscreen agents may undergo
photodegradation, resulting in the transfor-
mation of these agents into toxic by-products
(Giokas et a. 2007, and literature therein).

Recently, it has also been demonstrated
that sunscreens have an impact on marine
bacterioplankton (Danovaro and Corinaldesi
2003), but there is no scientific evidence for
their impact on coral reefs.

To evaluate the potential impact of sun-
screen ingredients on hard corals and their
symbiotic algae, we conducted several indepen-
dent in situ studies with the addition of differ-
ent concentrations of sunscreens to different
species of Acropora (one of the most common
hard-coral genus), Stylophora pistillata, and
Millepora complanata. These studies were per-
formed from 2003 to 2007 in different areas of
the world, including the Celebes Sea (Pacific
Ocean), the Caribbean Sea (Atlantic Ocean),

and the Andaman Sea and the Red Sea
(Indian Ocean).

Materials and Methods
Study areas and experimental design. In situ
experiments were conducted in four coral
reef areas: Siladen, Celebes Sea (Indonesia,
Pacific Ocean); Akumal, Caribbean Sea
(Mexico, Atlantic Ocean); Phuket, Andaman
Sea (Thailand, Indian Ocean), and Ras
Mohammed, Red Sea (Egypt, Indian Ocean).
Nubbins of Acropora spp. (- 3-6 cm) were col-
lected, washed with virus-free seawater filtered
onto 0.02-iLm membranes (Anotop syringe fil-
ters; Whatman, Springfield Mill, UK),
immersed in polyethylene Whirl-pack bags
(Nasco, Fort Atkinson, WI, USA) filled with
2 L virus-free seawater, and incubated in situ.
Additional experiments were also performed
with other hard coral genera: S. pistillata and
M complanata. Replicate sets containing nub-
bins from different colonies (n = 3, including
more than 300 polyps each) were supple-
mented with aliquots of sunscreens (at final
quantities of 10, 33, 50, and 100 1iL/L seawa-
ter) and compared with untreated systems
(used as controls). Corals were incubated at
the same depth of donor colonies at in situ
temperature (Table 1). During two experi-
ments conducted in the Red Sea and in the
Andaman Sea, we tested the effects on coral
bleaching of the same chemical filters and
preservatives contained in the sunscreen for-
mula of different brands (Tables 1 and 2).
Subsamples (50 mL) of seawater surrounding
coral nubbins were collected at 12-hr intervals
and fixed in 3% glutaraldehyde for subsequent
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analyses (i.e., zooxanthellae counts and transmis-
sion electron microscopy, TEM). Additional sea-
water samples were immediately processed
without any preservation for viruslike particles
counts. At the end of the experiments, samples of
coral tissue were fixed in 3% glutaraldehyde and
stored at 4°C for zooxanthellae count and TEM.

Quantification of bleaching. To quantify
the levels of coral bleaching (Siebeck et al.
2006), we performed a colorimetric analysis on
digital photographs of corals taken at the begin-
ning of the experiments and after various times
of treatment with sunscreen and organic UV
filters. Photographs were taken under identical
illumination with a Canon PowerShot A620
digital camera (Canon Inc., Tokyo, Japan) with
a scale meter on the background. The photo-
graphs were successively analyzed with a photo-
editing software for color composition [cyan,
magenta, yellow, black (CMYK)]. Levels of
bleaching were measured as the difference
between the coral's color at the beginning of the
experiments and after treatments. Variations in
the percentage of the different color compo-
nents (CMYK) were analyzed with one-way
analysis of variance (ANOVA; Table 3). To
rank the bleaching effect due to the different
ingredients tested, we obtained Bray-Curtis

similarity matrix and multidimensional scaling
analysis of the shifts in CMYK color composi-
tion of treated corals using Primer 5.0 software
(Primer-E Ltd., Plymouth, UK). Bleaching
rates were measured as the dissimilarity percent-
age in CMYK color composition between
treated and control corals using the SIMPER
tool of Primer 5.0 software (Primer-E Ltd).

Analysis of zooxanthellae. Zooxanthellae
were extracted from coral nubbins using a jet
of artificial seawater with a WaterPick (Braun,
Germany) and centrifuged (4,000 x g, for
10 min) to separate the algae from the host tis-
sue. Replicate suspensions (200-500 VQL) of
zooxanthellae extracted from coral tissue and
those released during the experiment were fil-
tered through 2.0-pm polycarbonate filters
and mounted on glass slides. Zooxanthellae
were counted under a Zeiss Axioplan epifluo-
rescence microscope (Carl Zeiss Inc., Jena,
Germany; x400 and xl,000), and the number
of cells was normalized to nubbins' area. Based
on the autofluorescence and gross cell struc-
ture, zooxanthellae released or extracted from
nubbins were classified as a) healthy (H,
brown/bright yellow color, intact zooxanthel-
lae); b) pale (P, pale yellow color, vacuolated,
partially degraded zooxanthellae); transparent

(T, lacking pigmentations, mostly empty zoo-
xanthellae; Mise and Hidaka 2003). Cell
integrity was also examined by TEM (see
below).

Standard sunscreen UVftlters for the
experiments. The UV filters ethylhexyl-
methoxycinnamate (OMC), octocrylene
(OCT), benzophenone-3 (BZ), ethylhexylsali-
cylate (EHS), and the solvent propylene glycol
(PG) (Table 2) were purchased from Sigma-
Aldrich Co. (Milan, Italy); 4-tert-butyl-4-
methoxydibenzoylmethane was obtained in
the form of Eusolex 9020 from Merck
(Darmstadt, Germany). 4-Methylbenzylidene
camphor was synthesized according to Saito
et al. (2004). Specifically, a mixture of d-cam-
phor (10 mmol), p-tolua[dehyde (12 mmol),
and potassium t-butoxide (15 mmol) was
refluxed in t-butyl alcohol (12 mL) for 5 hr.
The reaction course was monitored by thin-
layer chromatography using cyclohexane-ethyl
acetate 8:2 as the eluant. The reaction mixture
was neutralized with 5% HCI and extracted
with ethyl acetate (10 mL x 3); the combined
organic extracts were washed with saturated
NaCI solution and dried over Na 2SO 4.
Evaporation of the solvent and column chro-
matography of the crude residue on silica gel

Table 1. Experiments on hard-coral species treated with different sunscreens and sunscreen ingredients.

Ocean Reef area

Pacific Celebes Sea,
Indonesia

Atlantic Caribbean Sea,
Mexico

Indian Red Sea,
Egypt

Indian Andaman Sea,
Thailand

Reef water
temp

2
erature ('C) Treatments

28, 30c Sunscreen brand 1
Sunscreen brand 1

Nutrients
Controls

28 Sunscreen brand 2
Controls

Sunscreen brand 2
Controls

24 Sunscreen brand 1
Sunscreen brand 1

Controls
Sunscreen brand 1

Controls
BMD8M

MBC
OCT
EHS

OMC
BZ
BP

PG (solvent)
25' Sunscreen brand 3

Sun
protecting

factor

15
15

8

8

8
15

Quantity
[pl/L (%)I,

100
10

100d

10

10

33
33

15 33

33(2)
3303)
33(6)
33(5)
33(6)
33(6)

33(0.5)
33

8 50

Controls

MBC
OMC
BZ
BP

5003)
50(6)
50(6)

50(0.5)

e
Species

Acropora divaricata
A.divaricata
A. divaricata
A. divaricata
Acropora cervicornis
A. cervicomis
Millepora complanata
M. complanata
Acropora sp.
Acropora sp.
Acropora sp.
Stylophora pistillata
S. pistillata
Acropora sp.
Acropora sp.
Acropora sp.
Acropora sp.
Acropora sp.
Acropora sp.
Acropora sp.
Acropora sp.
Acropora pulchra, Acropora

aspera, Acropora
intermedia, Acropora sp.
A. pulchra, A. aspera, A.
inteanedia, Acropora sp

A. pulchra
A. pulchra
A. pulchra
A. pulchra

No. of
xperimental

sets

6
6
6
6
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

15

15

3
3
3
3

Bleaching
initiation (hrl

NO
ND

No bleaching
No bleaching

18
No bleaching

24
No bleaching

24
24

No bleaching
nd

No bleaching
No bleaching

24
No bleaching
No bleaching

2
24
24

No bleaching
24

Bleaching
rate [hr (%)]b

24(81,95)
36 (NO)

No bleaching
No bleaching

36(84)
No bleaching

36 (35)
No bleaching

48(81)
48(89)

No bleaching
48(65)

No bleaching
No bleaching

48(63)
No bleaching
No bleaching

24(91)
48(86)
48(84)

No bleaching
48-62 (74-88)

No bleaching No bleaching

48 62(95)
48 96(911
48 96 (93)
48 96(90)
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Zooxanthellae
released (N)

NO
NO
NO
NO
87
3
10
2
44
30
1

NO
NO

13
10
3
3
86
83
90
16

88-95

1-2

95
90
84
79

Abbreviations: WMOBM, 4-tert-butyl-4-methoxydibenzoylmethane; BP, butyl paraben; BZ, benzophenone-3; EHS, ethylhexylsalicylate; MBC, 4-methylbenzylidene camphor; NO, not
detected; OCT, octocrylene; OMC, ethylhexylmethoxycinnamate; PG, propylene glycol.
aPercentage concentrations of the filters allowed in sunscreen formulations in both American and European markets. bBleaching rates measured as percentage chromatic dissimilarity
with the coral used as a control ICMYK) at different experiment times (hr). 'Temperature in outdoor aquarium.OConcentrations of nutrients relative to added sunscreen are calculated on
the ratio of organic carbon to total nitrogen and phosphorous (wt:wt) of 31:2:1. 0Local temperature during the experiment was below average season values.
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eluting with cyclohexane-ethyl acetate 8:2 gave
4-methylbenzylidene camphor as a white solid
which was crystallized from hexane (70%
yield). 'H NMR (200 MHz, CDCI3): 6 = 0.8
(s, 3H), 0.99 (s, 3H), 1.03 (s, 3H), 1.48-1.60
(in, 2H), 1.70-1.85 (in, 1H), 2.12-2.20 (in,
1H), 2.37 (s, 3H), 3.10 (d, 1H, J= 4.1 Hz),
7.19 (d, 2H, J = 8.0 Hz). 7.21 (s, 1H), 7.38
(d, 2H, J = 8.0 Hz) ppm. The preservative BP
(butyl paraben) was obtained through esterifi-
cation of 4-hydroxybenzoic acid with butyl
alcohol: 20 mmol 4-hydroxybenzoic acid was
dissolved in 25 mL butyl alcohol in the pres-
ence of a catalytic amount of p-toluensulfonic
acid (- 2 mmol) and refluxed for 7 hr. The
reaction mixture was washed with NaHCO 3
0.5 M and extracted with diethyl ether
(25 mL x 3). The organic layer was dried over
Na2SO4 and the solvent evaporated under
reduced pressure. Butyl paraben was obtained
with a 75% yield. 'H NMR (200 MHz,
CDCI3 ): 6 = 0.97 (t, 3H, J = 7.1 Hz),
1.38-1.65 (in, 2H), 1.70-1.76 (in, sH), 4.30
(t, 2H, J= 6.5 Hz), 6.89 (d, 2H, J= 8.88 Hz),
7.95 (d, 2H, J= 8.8 Hz) ppm. The amounts of
UV filters and preservatives used in the sun-
screen addition experiments were calculated on
the basis of the percentage concentrations of
the respective filters allowed in sunscreen for-
mulations in both American and European
markets. Hence, concentrations below the
more restricted limits imposed by American

regulations were used: BMDBM (2%), BZ
(6%), OMC (6%), OCT (6%), EHS (5%),
MBC (3%), BP (0.5%).

Quantification of sunscreen release in
seawater. To estimate the amount of UV fil-
ters and preservatives released from sunscreen
formulae, 2 mg sunscreen/cm 2 [dose recom-
mended by the U.S. Food and Drug
Administration (FDA); Poiger et al. 2004]
was applied to the hands of two volunteers.
The hands were then immersed in 2 L of
0.4 5-pm filtered seawater at 24°C for 20 min.
Hands without sunscreen applications were
used as controls. All experiments were
repeated 3 times. The percentage of sunscreen

released into the seawater was estimated by
high performance liquid chromatography
(HPLC) analyses on the sunscreen and
seawater samples.

Some investigators suggest that the sun-
screen dose recommended by the U.S. FDA is
much lower than the amount actually used by
tourists (Giokas et al. 2007, and literature
therein); thus, the quantity of sunscreen
released during a usual bath could be far
higher than that estimated in this study.

HPLC analysis of sunscreens. UV filters
were extracted from I L seawater obtained
from the sunscreen release experiment by
solid-phase extraction (SPE) (C18 Bakerbound

Table 3. Shifts in the percentage contribution of the different coral color components [cyan, magenta, yellow,
black (CMYK)] that occurred during the experiments (addition of sunscreen and sunscreen ingredients).

Coral color shift'
Treatments C M Y K Bleaching Significanceb

Control 0 2 3 0 NV NS
Sunscreen 19 25 17 33 Visible ...

BMOBM 6 22 12 33 NV
BZ 6 24 7 43 NV
0MC 13 37 23 53 Visible
OCT 7 23 18 39 NV
EHS 6 20 7 38 NV NS
MBC 8 17 5 37 NV
BP 9 32 33 29 Visible

Abbreviations: NS, none of the four variables is significant; NV, nonvisible bleaching. For acroynm definitions under
"Treatment," see Table 1.
fShift estimated as the average of 20 measurement points of the four colorimetric variables (CIMYK). bSignificance
(p <0.05) of each variable calculated by ANOVA; number of asterisks indicate the number of significant variables.

Table 2. Physicochemical properties of the UV filters.

Chemical name Molecular Water solubility
(INCI name) Key 8  Chemical structure weight (g/mol) (mg L-1) at 25°C Log K,w5  Xmas

2-Hydroxyl-4-methoxybenzophenone BZ H 228.25 68.56 3.52 286
(benzophenone-3) 

I C,) I, H

4-tert-Butyl-4'-Methoxydibenzoyl methane BMOBM ./• \, L /\, 310.39 1.52 2.41 355
(butyl methoxydibenzoylmethane)

2-Ethylhexyl -4-methoxycinnamate OMC I-290.41 0.15 5.80 305
(ethylhexylmethoxycinnamate)

2Ethylhexyl 2-cyano-3,3-diphenylacrylate OCT 1C361.49 13 6.88 303
(octocrylene)c=

2-Ethylhexyl salicylate EHS 250.37 NA 6.02 305
(ethylhexyl salicylate)

3-(4'- Methyl benzyl idere) camphor MBC 240.35 0,57 5.47 300
(4-meth ylbenzylidene camphodr),_a 

H

CH / CO

Butyl p-hydroxybenzoatel BP 194.23 207 3.57 253
(butylparaben)

He" a
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Abbreviations: INCI, International Nomenclature for Cosmetic Ingredients; NA, not available.
"Key abbreviations adopted in this paper. For acronym definitions," see Table 1. bOctanol/water partition coefficient. 'This is a preservative, not a UV filter.
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SPE column, 500 mg/6 mL; J.T. Baker,
Phillipsburg, NJ, USA). Before extraction an
internal standard, butyl-cinnamate (BC,
Sigma-Aldrich Co.) was added to the seawater
sample. The SPE column was conditioned
with 10% methanol, and the sample was
passed through the column at approximately
20 mL/min. The ingredients were recovered
from the column using 1 mL acetonitrile.
Analyses were performed on an HPLC appara-
tus consisting of a Varian RP-C18 column
(5 Pim, 250 x 4.60 mm), a 2 0 -pL injection
loop, a Varian Pro Star solvent delivery module,

A

a Varian Star 5.0 Workstation and Varian 9050
variable wavelength UV-VIS detector (Varian
Inc., Palo Alto, CA, USA). The analytes
injected into the chromatograph eluted in
18 min (1 mL/min) using a linear gradient
starting from solution A (methanol:acetoni-
trile:water:acetic acid, 55:20:24:1, vol/vol) and
ending with solution B (methanol:acetoni-
trile:water:acetic acid, 55:40:4:1, vol/vol). UV
detection was carried out at X = 255 nm for
BP and X = 300 nm for MBC, OMC and BC.
Chromatograms were analyzed with the
Varian Interactive Graphics Program.

B

D

Figure 1. Impact of sunscreen addition on nubbins of Acropora. Untreated (brown) and treated (bleached)
nubbins of (A) Acropora cervicornis (Caribbean Sea, Mexico); (B) Acropora divaricata (Celebes Sea,
Indonesia); (C) Acropora sp. (Red Sea, Egypt); and (D) Acropora intermedia (Andaman Sea, Thailand).
Images were taken within 62 hr of the start of sunscreen incubations. Scale bar = 2 cm.

AC
Figure 2. Effect of 100-pL sunscreens on Acropora divaricata nubbins after 24-hr incubation at various
temperatures. (A) control; (B) nubbins incubated at 28°C; and (C) nubbins incubated at 30'C. Scale bar = 1 cm.

Viral counts and infection of zooxanthellae
and TEM analysis. Water samples for viral
counts were processed immediately without any
fixative with SYBR green and SYBR Gold
staining (Shibata et al. 2006). Immediately after
collection, subsamples (200 pL) of seawater sur-
rounding coral nubbins were diluted 1:10 in
prefiltered MilliQ, filtered through a 0.0 2-p-m
pore-size Anodisc filter (25-mm diameter,
A120 3; Whatman) and immediately stained
with 20 4iL SYBR Green I and SYBR Gold
(stock solution diluted 1:20 and 1:5,000
respectively; Invitrogen, Carlsbad, CA, USA).
Filters were incubated in the dark for 15 min
and mounted on glass slides with a drop of
50% phosphate buffer (6.7 mM, pH 7.8) and
50% glycerol containing 0.25% ascorbic acid
(Shibata et al. 2006; Helton et al. 2006; Wen
et al. 2004). Slides were stored at 20'C until
analysis. Counts were obtained by epifluores-
cence microscopy (magnification, xl ,000; Zeiss
Axioplan) by examining at least 10 fields, that
is, at least 200 cells or particles per replicate.

TEM analyses were conducted on decalci-
fied corals (2% vol/vol formic acid, 4°C,
8 days. Acropora tissue and pellets of zooxan-
thellae released during the experiment were
post-fixed in 1% osmium tetroxide (Sigma-
Aldrich Co.), dehydrated through an increas-
ing acetone series (25%, 50%, 75%, 100%)
and embedded in an Epon-Araldite mixture
(Multilab Supplies, Fetcham, UK). Ultrathin
resin sections (50-70 nm) were cut with a
Reichert Ultracut E microtome (Reichert,
Wien, Austria). Before analysis, sections were
stained with saturated uranyl acetate and 1%
lead citrate and collected on 200-mesh
copper/rhodium grids (Multilab Supplies).

Estimates of release of sunscreen in reef
areas. The global release of sunscreens in areas
harboring coral reefs can be roughly estimated
from their average daily use and the number
of tourists. An average dose application of
2 mg/cm2 of sunscreen (dose suggested by the
U.S. FDA) for a full body surface of 1.0 m2

results in an average usage of 20 g per applica-
tion (Poiger et al. 2004). We consider a con-
servative measure of two daily applications
per tourist traveling on a 5-day average tourist
package, and a rough estimate of 78 million
of tourists per year in areas hosting reefs
[10% of world tourists registered in 2004;
United Nations World Trade Organization
(UNWTO) 20071, Based on this calculation
and on annual production of UV filters,
between 16,000 and 25,000 tons of sun-
screens are expected to be used in tropical
countries. According to our experiment, it is
estimated that at least 25% of the amount
applied is washed off during swimming and
bathing, accounting for a potential release of
4,000-6,000 tons/year in reef areas. Because
90% of tourists are expected to be concentrated
in approximately 10% of the total reef areas,
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we estimated that up to 10% of the world
reefs is potentially threatened by sunscreen-
induced coral bleaching.

Results and Discussion
Coral bleaching caused by sunscreens and UV
filters. In all replicates and at all sampling sites,
sunscreen addition even in very low quantities
(i.e., 10 pL/L) resulted in the release of large
amounts of coral mucous (composed of zoo-
xanthellae and coral tissue) within 18-48 hr,
and complete bleaching of hard corals within
96 hr (Figure 1; Table 1). Different sunscreen
brands, protective factors, and concentrations
were compared, and all treatments caused
bleaching of hard corals, although the rates of
bleaching were faster when larger quantities
were used (Table 1). Untreated nubbins (coral
branches of 3-6 cm) used as controls did not
show any change during the entire duration of
the experiments (Table 1). Bleaching was faster
in systems subjected to higher temperature,
suggesting synergistic effects with this variable
(Table 1; Figure 2). TEM and epifluorescence
microscopy analyses revealed a loss of photo-
synthetic pigments and membrane integrity in
the zooxanthellae released from treated corals
(30-98% of zooxanthellae released from
Acropora nubbins were partially or totally dam-
aged, appearing pale and transparent), whereas
zooxanthellae membranes from untreated
corals were intact (37-100% of the zoo-
xanthellae released showed a defined shape and
red fluorescing color; Figures 3 and 4). All
these results indicate that sunscreens have a
rapid effect on hard corals and cause bleaching
by damaging the symbiotic zooxanthellae.

We tested sunscreen (10 lUL/L) containing
concentrations of UV filters higher than those
reported in most natural environments. At
the same time, the coral response to sunscreen
exposure was not dose dependent, as the same
effects were observed at low and high sun-
screen concentrations. Therefore, we hypoth-
esize that UV filters can have potentially
negative impacts even at concentrations lower
than those used in the present study.

Sunscreens typically comprise up to 20 or
more chemical compounds. To identify the
organic UV filters or preservatives possibly
responsible for coral bleaching, seven com-
pounds typically present in sunscreens were
selected (Table 2), and additional experiments
were carried out in which each single ingredi-
ent was tested on Acropora spp. Among the
ingredients tested, butylparaben, ethylhexyl-
methoxycinnamate, benzophenone-3 and
4-methylbenzylidene camphor caused com-
plete bleaching even at very low concentra-
tions (parabens account for 0.5% of sunscreen
ingredients). Conversely, all other compounds
tested (i.e., octocrylene, ethylhexylsalicylate,
and 4-tert-butyl-4-methoxydibenzoylmethane)
and the solvent propylene glycol, which is also

present in sunscreen formulations, had a
minor effect or no effects when compared
with controls (Table 1). These results suggest
that sunscreens containing parabens, cinna-
mates, benzophenones, and camphor deriva-
tives can contribute to hard-coral bleaching if
released into natural systems.

Amounts of sunscreen released into
tropical environments and their impacts.
Sunscreen product sales exceed half a billion
dollars (Shaath and Shaath 2005), and it is
estimated that 10,000 tons of UV filters are

produced annually for the global market.
According to official data of the UNWTO, it
can be estimated that 10% of sunscreens pro-
duced are used in tropical areas with coral
reefs (Wilkinson 2004). We estimated that,
on average, about 25% of the sunscreen
ingredients applied to skin are released in the
water over the course of a 20-min submer-
sion. According to these estimates, we believe
that up to 10% of the world's coral reefs
would be threatened by sunscreen-induced
coral bleaching.

Figure 3. Zooxanthellae release from hard corals in control and sunscreen addition samples. (A) TEM
images of healthy zooxanthellae (intact cell structure and membrane) in control untreated Acropora nubbin,
and (B) zooxanthellae damaged by sunscreen treatment: cells appear swollen and vacuolated, without
chloroplasts and double the size of the controls; the thylakoids are unpacked and dispersed inside the cells,
and cell-membrane integrity is lost (arrowhead). (C) Autofluorescence images showing healthy Jred) zoo-
xanthellae in control sample and (B) some healthy (H) and damaged and partially damaged (T, transparent
and pale) zooxanthellae released after sunscreen treatment. Scale bars = 2 pm (A, B) and 5 pm (C, D).

a.a)

CL

A. aspera A, aspera Acropora sp. Acropora sp. A. intermedia A. intermedia
+ SS control + SS control + SS + control

Figure 4. Epifluorescence microscopy analysis of the level of damage in zooxanthellae released after sun-
screen (SS) addition.
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The impact of sunscreens would be
expected to be crucial in atolls and coastal
coral reefs with low water renewal and strong
tourist vocation. Our results provide strong
scientific evidence of the potential impact of
these products in tropical habitats and repre-
sent a pointer for outlining specific regula-
tions for protecting coral reefs.

Effect of sunscreen ingredients on viral
infections. Previous studies have demonstrated
that sunscreens can significantly enhance viral
production in seawater by inducing the lyric
cycle in prokaryotes with lysogenic infection
(equivalent to the latent infection of eukary-
otes; Danovaro and Corinaldesi 2003). Here,
we demonstrate that a similar phenomenon
occurs also in hard corals. After the addition of
sunscreens, viral abundance in seawater sur-
rounding coral branches increased signifi-
cantly, reaching values greater by a factor of
15 than in controls (Figure 5A). Because,
prior to any treatment, the hard corals were
carefully washed with and incubated in virus-
free seawater, we conclude that the viruses
encountered were released from the corals or
their symbionts. Moreover, addition of
organic nutrients without UV filters or preser-
vatives did not result in coral bleaching or in a

I
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20
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5

0

+ sunscreen

significant increase in the num
the ambient seawater (Figure
bleaching and the increase in
in seawater were also seen after
with mitomycin C, an antibi
used to induce the lyric cycle
infections (Figure 5B). TEM
screen-treated corals showed
virus-like particles (VLPs) arc
the zooxanthellae. The VLP
hycosahedral in shape and 50-
(Figure 6). No viruses were enc
inside or outside the zooxanth
samples. All these results ind
screens caused coral bleaching
lyric cycle in symbiotic zoox
latent viral infections.

Causative agents (mostl
fungi; Rosenberg et al. 2007)
lated and characterized for only
20 coral diseases described in
ments. To date, viruses have
cells of about 50 algal specie
nearly all major algal classes. T]
viruses have a significant role
(Brussard 2004). There are, h
few studies on viruses infectin
viruses were encountered in h

5

S4

8 2

0

+ nutrients

II
+ sunscreen

Figure 5. Viral enrichment factors of ambient seawater (as the ratios of viral density in tre
samples) after the addition of sunscreen, nutrient, and mitomycin C. (A) Viral enrichment
seawater within 24 hr after sunscreen and organic nutrients addition. (B) Viral enrichmer
ent seawater within 12 hr after sunscreen and mitomycin C addition. Organic nutrients
and carbohydrates) were added at concentrations equivalent to those contained in sunsi
to Danovaro and Corinaldesi (2003). Values are + SE.

Figure 6. TEM images of viruslike particles (VLPs) associated with zooxanthellae releas
after sunscreen treatment. IA, B) VLPs attached to zooxanthellae membranes. (C) Viruses
part of zooxanthellae with visible tail penetrating cell membrane. Scale bars = 100 nm (.
Arrowheads indicate sections magnified in insets.

ber of viruses in UV-treated zooxanthellae of Pavona danai,
5A). Hard-coral Acroporaformosa, and S. pistillata, suggesting
viral abundance the presence of latent viral infections (Davy
coral treatment et al. 2006; Lohr et al. 2007). All our samples

otic commonly from different areas of the world showed viral
in latent viral lyric cycles after treatment with sunscreens and

analysis of sun- other inducing factors. The results of the pre-
the presence of sent study and these data from the literature
und and inside indicate that latent infections are common in
s were round- symbiotic zooxanthellae.
-130 nm in size Viruses have a key role in population
countered either dynamics and in community composition and
eellae in control diversity of marine bacterioplankton and
icate that sun- phytoplankton (Brussard 2004; Suttle 2005)
by inducing the Viruses also contribute significantly to hori-
anthellae with zontal gene transfer, and can influence the

pathways of energy and material flow in
y bacteria and aquatic ecosystems, with important implica-
have been iso- tions for global biogeochemical cycles
6 of more than (Fuhrman 1999). The results presented here

natural environ- provide new insights into the functional and
been found in ecological role of aquatic viruses and indicate

s, representing that induction of the lyric cycle in zooxanthel-
his suggests that lae with latent infection represents an impor-
in algal ecology tant factor contributing to coral bleaching.
iowever, only a Recent studies have reported that pesticides,
g zooxanthellae: hydrocarbons, and other contaminants can
eat-shocked or cause coral bleaching (Brown 2000; Douglas

2003). We suggest that these factors, which also
have the potential to induce the viral lyric cycle
in microorganisms or algae with latent infec-
tions (Cochran et al. 1998; Danovaro and
Corinaldesi 2003; Davy et al. 2006; Jang and
Paul 1996) could act synergistically with sun-
care products, thereby increasing the frequency
and extent of coral bleaching.

Our results indicate that sunscreens pro-
+ mitomycin C moting lyric cycle in viruses can cause coral

eated and control bleaching. Because human use of tropical
factor of ambient ecosystems and coral reef areas is progressively
nt factor of ambi- increasing, we predict that the impact of sun-
(lipids, proteins, screens on coral bleaching will grow consider-
reens according ably in the future on a global scale. Actions

are therefore needed to stimulate the research
and utilization of UV filters that do not
threaten the survival of these endangered
tropical ecosystems.

CORRECTION

In Table 2, the log Ko,v value for 2-ethyl-
hexyl salicylate has been corrected from
"NA" in the original version published
online to "6.02."
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