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ABSTRACT: Lignans are compounds found in a variety of plant materials including flaxseed, pumpkin seed, sesame
seed, soybean, broccoli, and some berries. The major lignan in flaxseed is called secoisolariciresinol diglucoside
(SDG). Once ingested, SDG is converted in the colon into active mammalian lignans, enterodiol, and entero-lactone,
which have shown promise in reducing growth of cancerous tumors, especially hormone-sensitive ones such as
those of the breast, endometrium, and prostate. Known for their hydrogen-donating antioxidant activity as well
as their ability to complex divalent transition metal cations, lignans are propitious to human health. The extraction
methods vary from simple to complex depending on extraction, separation, fractionation, identification, and detec-
tion of the analytes. Flax lignan is also a source of useful biologically active components found in plant foods, such
as phytochemicals, and it is considered a functional food. The safety issues in flaxseed are also briefly discussed.

Introduction
Flax (Linum usitatisimum L.) is grown as either an oil crop or as

a fiber crop, with fiber (for linen) derived from the stem of fiber
varieties and oil from the seed of linseed varieties (Diederichsen
and Richards 2003; Vaisey-Genser and Morris 2003). Freeman
(1995) reported that the seed of flax is flat and oval with a pointed
tip, and varies in color from dark brown to yellow. Depending
on the cultivar and growing conditions, flaxseed contains 40% to
50% oil and meal, comprised of 23% to 34% protein, 4% ash, 5%
viscous fiber (mucilage), and lignan precursors (9 to 30 mg/g of
defatted meal) (Muir and others 1996; Muir and Westcott 2003).
Annual world production of flax was 3.06 million metric tons
in 1999 to 2000 with Canada the world’s largest producer of
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flax (about 38% of total production) (Anonymous 2000). Flax is
currently the 2nd-most important oilseed crop in Western Canada
and is grown primarily in the prairie provinces of Saskatchewan
(70%), Manitoba (26%), and Alberta (4%) (Anonymous 2000).

Flax is making its mark in the world’s food supply as a func-
tional food. It delivers a health boost beyond what might be
expected from their traditional nutrient content. Flax fits this de-
scription perfectly, being rich in alpha-linolenic acid (ALA), the
essential omega-3 fatty acid, and phytochemicals such as lignans
(Morris 2003).

Flaxseed has been the focus of increased interest in the field
of diet and disease research due to the potential health benefits
associated with some of its biologically active components: oil
containing approximately 59% a-linolenic acid) and the presence
of plant lignan secoisolariciresinol diglycoside (SDG;).

Lignans are found in most fiber-rich plants, including grains
such as wheat, barley, and oats; legumes such as beans, lentils,
and soybeans; and vegetables such as garlic, asparagus, broc-
coli, and carrots (Tham and others 1998; Murphy and Hen-
drich 2002). Plant lignans are phenolic compounds (Harris and
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Figure 1 --- Structure of SDG and SECO
(adapted from Muir and Westcott
2003). ∗Molecular weight.

Haggerty 1993). Flax is a particularly rich source of a lignan
called secoisolariciresinol diglycoside (SDG). SDG is a plant lig-
nan that is converted by bacteria in the colon of humans (and
other animal also) to mammalian lignans known as enterodiol
(ED) and enterolactone (EL).

We live in a world where free radicals can come from many
sources and contribute to the deterioration of health. Sources of
free radicals include pollutants, drugs, metal ions, radiation, and
high intakes of polyunsaturated fatty acids, and also strenuous
exercise, mitochondrial dysfunction, and smoking. These may
result in damage to membrane lipids, proteins, nucleic acids,
and carbohydrates, which can result in cancer, neurological dis-
eases, lung diseases, diabetes, vascular diseases, autoimmune
diseases, premature aging, and eye diseases (Lachance and
others 2001).

Lignans are found in many cereals and grains, with the highest
amounts occurring in flaxseed. Despite their more widespread
occurrence in foods and their greater consumption in West-
ern populations the lignans have received comparatively little
attention.

In the United States, flaxseed (FS) and flaxseed meal (FLM,
partially defatted FS) have found market acceptability as a com-
ponent in some cereals, specialty breads, cookies, and salad
dressings (Carter 1993; Nesbitt and Thompson 1997). Its growing
popularity is due to food components that may provide health
benefits beyond basic nutrition (Hasler and others 2000). Among
the reported potential health benefits associated with FS and/or
FLM are decreased risk of cardiovascular disease (Craig 1999;
Jenkins and others 1999), decreased risk of cancer, particularly
of the mammary and prostate gland (Craig 1999), antiinflamma-
tory activity (Ranich and others 2001), laxative effect, and allevi-
ation of menopausal symptoms and osteoporosis (Kurzer and Xu
1997).

Phytoestrogen supplementation with flaxseed or soy flour have
been reported to increase vaginal cell maturation, an indica-
tion of estrogen activity in postmenopausal women (Wilson and
others 1990), and to significantly reduce menopause symptom
scores, particularly hot flashes and vaginal dryness (Brzezinski
and Debi 1999). Dietary studies indicate substantial reduction
in breast cancer risk among women with high urinary excretion
of phytoestrogens, particularly the isoflavones equol and lignan
entero-lactone (Ingram and others 1997). The lower incidence
of prostate cancer in Asian men compared to men from North
America and Europe has also been speculated to be due to higher
dietary intake of isoflavones and lignans (Adlercreutz 1990; Mor-
ton and others 1997).

Recent research has demonstrated the ability of SDG to scav-
enge hydroxyl radicals and shown that SDG have potent antiox-
idant activity. They are biologically active phytochemicals with
apparent anticancer and antioxidant potential. It stands to reason
that a review is in order on the extraction, synthesis, metabolism,
and antioxidant potentiality of flaxseed lignan, a naturally occur-
ring compound because people everywhere have started to think
more about health issues and have taken an interest in natural
antioxidant from foods.

Lignans
Sources and structures. Lignans are diphenolic compounds of

higher plants formed by the coupling of two coniferyl alcohol
residues that are present in the plant cell wall (Jenab and others
1999; Westcott and Muir 2003). Bakke and Klosterman (1956)
isolated SDG (Figure 1) from a fat-free extract of linseed meal
with a 3% yield. SDG was found to be very soluble in water and
alcohol. The same authors then isolated SECO [2,3-di-(methoxy-
4-hydroxybenzyl) butane-1,4-diol] (Figure 1) by acid hydrolysis
of SDG (Bakke and Klosterman 1956). SECO is the aglycone (non-
sugar) portion of SDG. Both SDG and SECO have a UV absorption
maximum at 280 nm, which is characteristic for lignans. Flax
also contains small amounts of the lignans matairesinol (MAT)
(11 μg/g of full fat flaxseed), pinoresinol, pinoresinol digluco-
side, isolariciresinol, and a diastereomer of SDG (Whiting 1987;
Mazur and others 1996).

SECO is the major lignan present in flaxseed, which is found
as the conjugate diglycoside SDG (Ford and others 1999). Early
studies have demonstrated that SDG is part of a larger com-
plex (Bakke and Klosterman 1956). An oligomer of SDG, which
is ester-linked via 3-hydroxy-3-methylglutaric acid (HMGA), has
been identified (Muir and others 2000a, 2000b; Ford and oth-
ers 2001; Westcott and Muir 2003). A straight chain oligomeric
structure composed of 5 SDG residues interconnected by 4
HMGA residues (molecular weight of about 4000 Da) was also re-
ported (Kamal-Eldin and others 2001). SDG may comprise greater
than 35% (by weight or mole %) of the polymer (Kamal-Eldin and
others 2001; Westcott and Paton 2001). Among foods, flaxseed
is the richest source of SDG (7 mg/g or 3.7 mg SECO 2/g). It
contains 75 to 800 times more SDG than any other foods (Mazur
and others 1996; Westcott and Muir 1996). Variation in flaxseed
lignan concentrations depend on the variety, location, and crop
year (Westcott and Muir 1996).

Whole seed and ground flax typically contain between 0.7%
and 1.9% SDG, which is approximately 77 to 209 mg SDG/tbsp of
whole seed or 56 to 152 mg SDG/tbsp of ground flaxseed (Morris
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Table 1 --- Levels of lignans in different food plant products.

Plant source Lignan Level (mg/kg; dry weight) Reference

Flaxseed SECOa 3699 Mazur and others (1996)
Matairesinol 10.9
Matairesinol 7 to 28.5b Kraushofer and Sontag (2002)
SDG 11900 to 25900C Eliasson and others (2003)

Sesame seed Sesamin 1547 to 8852d Namiki (1995)
Sesamolin 1235 to 4765d

Cereals SECO 0.1 to 1.3 Mazur and Adlercreutz (1998)
Matairesinol 0 to 1.7

Vegetables SECO 0.1 to 38.7 Mazur and Adlercreutz (1998)
Matairesinol Trace-0.2

Legumes SECO 0 to 15.9 Mazur and others (1998a)
Matairesinol 0 to 2.6

Fruits SECO Trace-30.4 Mazur (1998);
Matairesinol 0 to 0.2 Mazur and Adlercreutz (1998)

Berries SECO 1.4 to 37.2 Mazur and others (2000)
Matairesinol 0 to 0.8

Tea SECO 15.9 to 81.9 Mazur and others (1998b)
Matairesinol 1.6 to 11.5

aObtained by enzymatic or acid hydrolysis.
bNot reported whether it is of fresh weight or dry weight.
cObtained by alkaline hydrolysis.
dIn oil.

2004). Flax oil containing added lignans has been available for
several years. One such product contains 0.1% SDG or about
14 mg SDG/tbsp flax oil (Morris 2004).

Other food sources of lignans are seeds, legumes, cereals, veg-
etables, berries, seaweed, tea, and alcoholic beverages (Thomp-
son and others 1991; Namiki 1995; Mazur and others 1996,
1998a, 1998b, 2000; Mazur 1998; Liggins and others 2000;
Nurmi and others 2003). Quantitative data on some lignans in
food are presented in Table 1.

Biosynthesis of lignans. The biosynthesis of lignan has recently
been revised based on the discovery of the dirigent proteins that
guide phenolic radical coupling (Davin and others 1997; Davin
and Lewis 2000). Lignans are derived mainly via differential par-
titioning of the monolignol, coniferyl alcohol, to yield the lignan
pinoresinol, which in turn serves as the precursor of both secoiso-
lariciresinol and matairesinol (Figure 2). Two genes encoding the
corresponding protein involved in the formation of pinoresinol
and lariciresinol have been obtained from developing flaxseed
(Ford and others 2001).

Elucidation of the pathway leading to the cancer chemopre-
ventive agent secoisolariciresinol (SDG) was first accomplished
using Forsythia intermedia, a plant that both produces and fur-
ther enantiometrically metabolizes pure pinoresinol, a dimeric
lignan formed from (E)-coniferyl alcohol. It involves the region
and stereoselective intermolecular phenoxy radical coupling of
2 molecules of (E)-coniferyl alcohol by a pinoresinol dirigent
protein to yield pinoresinol (Ford and others 2001). Sequential
enantiospecific reduction of this intermediate then occurs by a
reductase to consequently generate lariciresinol and then SDG.
Glycosilation of SDG is accomplished by secoisolariciresinol
diglucosyl transferase that appears to be localized mainly in the
seed (Ford and others 2001). Elucidation of the lignan biosyn-
thetic pathway leads to the development of strategies for enhanc-
ing the levels of SDG in staple dietary foodstuffs and maximizing
yields of lignans used to treat or protect against human disease
(Jung and others 2000).

Analysis of phenolic compounds in flaxseed. Extraction meth-
ods vary widely depending on the sample and the phytoestro-
gen of interest. Following the discovery of SDG by Bakke and
Klosterman (1956) and its connection to the mammalian lig-

nans, several methods for the analysis of lignans and other con-
stituents of the fat free portion of flaxseed have been developed,
although only a few quantitative ones. The polymeric powder ob-
tained by ethanol : dioxane extraction of defatted flaxseed flour
(DFF) was found to release hydroxymethyl glutaric acid (HMGA;
Figure 3), 4-O-β-D-glucopyranosyl coumaric acid, and SDG
upon alkaline hydrolysis (Klosterman and Smith 1954; Kloster-
man and others 1955; Bakke and Klosterman 1956), suggesting
that these compounds are bound in ester-linked polymeric struc-
ture(s) in flaxseed. The compounds may also be released from
the polymeric material as aglycones by enzyme or acid hydroly-
sis (Mazur and others 1996).

Extractions of flaxseed phenols have usually been carried out
with organic solvents (Bakke and Klosterman 1956; Bambagiotti-
Alberti and others 1994; Rickard and others 1996; Chimichi and
others 1999) sometimes mixed with water (Axelson and others
1982; Kozlowska and others 1983; Dabrowski and Sosulski 1984;
Amarowicz and others 1994; Westcott and Muir 1996; Meagher
and others 1999; Ford and others 2001; Charlet and others 2002;
Degenhardt and others 2002; Sicilia and others 2003), but the
use of supercritical fluid (SCF) extraction has also been reported
(Harris and Haggerty 1993). SDG and cinnamic acids absorb
light in the UV-region and have been detected and quantified by
column chromatography, HPLC, GC, and NMR techniques. The
differences in efficiency of different modes of extractions and
hydrolyses have resulted in a wide variation of yields. Methods
for the quantification of SDG in flaxseed have been compiled in
Table 2.

Hydrolysis of glycosidic bonds of lignans. Two basic approaches
have been used to hydrolyze the glycosidic bonds between plant
lignans and carbohydrates, and both methods have been used
to produce analytical results on lignan concentrations in vari-
ous foods (Thompson and others 1991; Mazur and others 1996).
The Thompson method employs anaerobic in vitro fermentation
of food containing plant lignans with gut bacteria producing
entero-lactone and enterodiol, the concentration of which is sub-
sequently measured by GC and flame ionization detection. The
2nd method, described by Mazur and others (1996), employs hot
acid to break the glycoside bond and is a multistepped process
using both enzyme and hot acid to hydrolytically remove the
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carbohydrate component of lignan in food. In this procedure,
the food extract is first subjected to enzyme hydrolysis,
liberating the lignan from their respective glycosides.

Since the lignans are not completely hydrolyzed by en-
zymes, hot acid is used to liberate the aglycones that are par-
titioned off with organic solvents. The organic fractions of lignan
aglycones are then purified, derivatized, and analyzed by gas
chromatography-mass spectrometry (GC-MS).

However, the stability of products from acid hydrolysis has
recently been questioned (Liggins and others 2000). It ap-
pears that a naturally occurring lignan called shonanin (3,4-
divanillyltetrahydrofuran) is also liberated from its glycosides
alongside SDG as a result of acid hydrolysis. To account for
the presence of shonanin and its hydrolytic product enterofu-
ran in foods, Liggins and others (2000) modified the procedure

of Mazur and others (1996) and simplified it for the quantifica-
tion of lignans, SDG, matairesinol, and shonanin in food after
hydrolytic removal of any conjugated carbohydrate. The modifi-
cation includes acid hydrolysis of food samples for 1, 2, and 3 h,
followed by neutralization with sodium hydroxide, separation of
the aglycones from aqueous to organic phase, and quantification
of the aglycones by GC-MS after the formation of trimethylsilyl
derivatives of the lignans.

The content of lignans in reference foods is reported as the
combined concentrations of SDG and shonanin, alongside
the concentration of matairesinol after 1, 2, and 3 h of hydroly-
sis, since optimum time of hydrolysis for the maximum yield of
lignans varies between foodstuffs.

Metabolism of flax lignans
Conversion of plant lignans to mammalian lignans. Studies in

which flaxseed was fed to rats, monkeys, or humans have found
that the urinary excretion of the lignans enterodiol (END) and
enterolactone (ENL) are significantly increased (Axelson and oth-
ers 1982; Westcott and Muir 1997). Excretion of END and ENL
increased 3- to 285-times after flaxseed consumption (5 to 10 g
daily for 6 wk) in the urine of 18 healthy young women, 31 healthy
postmenopausal women, and 6 healthy young men (Lampe and
others 1994; Hutchins and others 2000).

The first mammalian lignans, END (MW = 302) and ENL
(MW = 298), were identified in humans and animals by Setchell
and others (1980). Mammalian lignans are formed in the human
body in the gastrointestinal (GI) tract, where GI bacteria hydrolyze
the sugar moiety of SDG to release SECO (Muir and others 1996,
1997, 2000b; Ford and others 1999; Thompson, 1999). This is
followed by dehydroxylation and demethylation by the colonic
microflora to give the mammalian lignan END (Figure 4). END is
presumed to be oxidized by the GI microbial flora to give ENL.
ENL may also be formed directly from matairesinol, although this
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Table 2 --- Extraction systems for lignan isolation from flaxseed and flaxseed containing foods.

Level SDG
Extraction Hydrolysis Purification (μmol/g seed) References

MeOH-dioxane (1:1) 24 h Ba methoxide Cellulose column 3.15 Bakke and Klosterman (1956)
In vitro Fermentation Na methoxide Silical gel (CHCl3-MeOH-H2O) 0.96 to 3.15 Thompson and others (1991)
β-Glucuronidase β-Glucuronidase C18 SPE 1.19 to 1.97 Obermeyer and others (1995)
β-Glucuronidase β-Glucuronidase Ether extraction/DEAE-Sephadex 9.05 to 10.21 Mazur and Adlercreutz (1998)

2 M HCl, 2.5 h, OH−QAE-SephadexAC−
100◦C

Reflux, 80% MeOH, 2 h β-Glucuronidase C18 SPE + Lipophilic 0.22 to 3.41 Setchel and others (1999)
gel chromatography

70% Aqueous alcohol NaOH C18 SPE 5.24 to 15.74 Westcott and Muir (1998)
95% EtOH-dioxane (1:1) 8 h nr nr 0.001 to 0.004 Harris and others (1994)
SCO2 + THF-H2O (1:1) nr nr 7.15 Wilson and others (1993)
Shaker, 80% 1 M HCl, 1 h 100◦C EtOAC-hexane (1:1) nr Meagher and others (1999)

MeOH, 4 h, 55◦C

nr = not reported.
Source: Adapted from Muir and others (2000a).
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is likely to be a minor metabolic route if other lignans are present
in the diet (Setchell and others 1980; Borriello and others 1985;
Westcott and Muir 1997; Muir and others 1996, 2000a). The
mammalian lignans differ from plant lignans in that mammalian
lignans have hydroxyl groups at the 3’ position while plant lig-
nans have their oxygenated substituents at the 3’ and 4’ positions
(Axelson and Setchell 1981; Thompson 1999; Muir and Westcott
2003). A scheme outlining the proposed biosynthetic pathway of
END and ENL from the flaxseed lignans SECO and SDG is shown
in Figure 4. Concentrations of mammalian lignans in urine are
typically greater than in plasma, thus most analytical methods tar-
get the measurement of urinary lignan levels (Muir and Westcott
2003).

Role of gut flora in the oxidation of plant lignans to mammalian
lignans. Incubation of flaxseed by bacteria present in stools, at a

concentration of 103 to 104 bacteria/g of stool resulted in the
formation of END and ENL (Borriello and others 1985). This
study showed that plant lignans are converted into END and
ENL and the conversion is not reversible, thus END and ENL
cannot convert to plant lignans in vivo. Furthermore, incubation
of flaxseed in a human fecal bacterial culture at 1000 to 10000
bacteria/g converted END to ENL, but sterile fecal cultures could
not (Setchell and others 1980). These results suggest that hu-
man gut floras are responsible for the conversion of plant lignans
to mammalian lignans. A time course study of the metabolism
of SDG by human fecal cultures shows initial demethylation
(Figure 5), occurs prior (20 to 30 h) to dehydroxylation (48 h)
(Wang and others 2000). Urinary excretion of END and ENL
has been used as an index of plant lignan intake (Thompson
1998).
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Antioxidant scavenging activity of lignans. Natural antioxidants
can be classified as primary (chain-breaking) antioxidants, which
can react directly with lipid radicals and convert them into sta-
ble products, or as secondary (preventive) antioxidants, which
can lower the rate of oxidation by different mechanisms (Decker
and others 2005). Primary antioxidants most often act by do-
nating a hydrogen atom, while secondary antioxidants may act
by binding metal ions able to catalyze oxidative processes, by
scavenging oxygen, by absorbing UV radiation, by inhibiting en-
zymes or by decomposing hydroperoxides (Schwarz and others
2001). It is known that different natural phenolic compounds
function as both primary and secondary antioxidants by differ-
ent mechanisms. Monitoring of either the decrease of the radical
or the antioxidant, or the formation of products can be used for
assessing the antioxidant activity (Decker and others 2005).

The antioxidant activity of SDG was lower than END and ENL
in both lipid and aqueous in vitro model systems (Kitts and oth-
ers 1999). The antioxidant activity was monitored by hydroxyl
and peroxyl radical scavenging activity of SDG, END and ENL
using a lipid emulsion system and inhibition of deoxyribose (Kitts
and others 1999). In this study, the deoxyribose assay was used
to evaluate the nonsite-specific and sitespecific Fenton reactant-
induced ·OH-scavenging activity (Kitts and others 1999). The
degree of oxidation of Fe2+ to Fe3+ (in the Fenton reaction) by
peroxyl radicals can be measured by the ammonium thiocyanate
assay (Kitts and others 1999).

Beneficial effects of SDG in cancer and lupus nephritis showed
that these beneficial effects could be due to the ability of SDG to
scavenge ·OH radicals (Prasad 1997).

The antioxidant activity of the flaxseed lignans and metabolites
have been to exert protective effects against AAPH-induced oxi-
dation, particularly in the recent literature (Hosseinian and others
2006, 2007; Chun and others 2007), evaluating the efficacy of
these plant and mammalian lignans in protecting against AAPH
peroxyl radical-induced damage and studies with DPPH (Eklund
and others 2005).

The antioxidant activities of SECO, SDG, END, and ENL
have also been suggested to contribute in reduction of hyper-
cholesterolemia, atherosclerosis, and diabetes (Prasad 2000a,
b). The antioxidant activity of SECO, END, and ENL was in-
vestigated by Prasad (2000b) using chemiluminescence (CL) of
zymosan-activated polymorphonuclear leukocytes (PMNL). This
study demonstrated that SDG, SECO, END, ENL, and vitamin
E, at a concentration of 2.5 mg/mL, produced a reduction of
zymosan-activated PMNL by 23.8%, 91.2%, 94.2%, 81.6%, and
18.7%, respectively (Prasad 2000b). The antioxidant activity was
highest with SECO and END and lowest with vitamin E. The rel-
ative antioxidant potency of SECO, END, ENL, and SDG was
4.9, 5, 4.3, and 1.3, respectively, as compared to vitamin E
(Prasad 2000b). This study suggested SECO, END, and ENL are,
respectively, 3.82, 3.95, and 3.43 times more potent than
SDG (Prasad 2000b). Activation of PMNL is known to gener-
ate oxygen-free-radicals. Oxygen-free radical-producing activity
of PMNL was monitored by measuring luminol-dependent CL.
The reduction of PMNL, therefore, reflects the antioxidant ac-
tivity of the compounds studied (Prasad 2000b). Zymosan is a
polysaccharide that is capable of stimulating inflammatory cy-
tokine production and PMNL. Zymosan may serve as a model
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for the study of innate immune responses (Prasad and others
1991).

Health benefits
Lignans. The health benefits of flaxseed lignans are thought to

be due to antioxidant activity, primarily as hydroxyl radical scav-
engers (Prasad 1997; Kitts and others 1999), and also as estro-
genic and antiestrogenic compounds due, in part, to the structural
similarity to 17-b-estradiol (Waters and Knowler 1982; Adler-
creutz and others 1992). The behavior of the lignans depends
on the biological levels of estradiol. At normal estradiol levels,
the lignans act as estrogen antagonists, but in postmenopausal
women (at low estradiol levels) they can act as weak estrogens
(Rickard and Thompson 1997; Hutchins and Slavin 2003). Other
activities related to estrogen include the in vivo synthesis of 2-
hydroxy estrogen, a compound that may protect against cancer
(Haggans and others 1999) and inhibit the binding of estrogen
and testosterone to receptors on sex-binding globulin (Martin and
others 1996).

The presence of the oxidized metabolites is unique and may
provide additional reasons for the health benefits of lignans.
Classical antioxidant mechanisms show that the addition of an
ortho-hydroxyl group to a monophenol enhances the antioxidant
activity of the original monophenol. Thus, some of the mam-
malian lignan metabolites may actually have greater or different
activity than the parent lignan. Kitts and others (1999) reported
that enterolactone and enterodiol had greater antioxidant activity
than the parent.

Role of flaxseed lignan in cancer prevention
Breast cancer. Lignans could be a significant part of a treat-

ment regimen for cancer based on the large number of small-
scale studies. The presence of flaxseed lignans in MCF-7 tu-
mors and the observed lignan binding to ER suggests that the
lignan function may be ER-mediated (Adlercreutz and others
1992; Saarinen and others 2000). Although the lignans have been
shown to be protective against breast cancer, minor structural
alterations may influence overall activity (Saarinen and others
2005). Thus, many of the aforementioned benefits might be the
results of specific structural features needed for lignans to bind
to ER.

Flaxseed was among the best food sources in the prevention
of in vivo spontaneous chromosomal damage in mice (Trentin
and others 2004). The exact reason for the chromosomal damage
prevention has not seen identified; however, the mechanism may
be related to the antioxidant function of flaxseed components.

Lignans have antioxidant activity and thus may contribute to
the anticancer activity of flaxseed (Prasad 1997; Kitts and others
1999; Yuan and others 1999; Kangas and others 2002).

Prostate cancer. Lignan, enterodiol, and enterolactone were
believed to be partly responsible for the growth inhibition of 3
human prostate cancer cell lines (Lin and others 2001). Morton
and others (1997) reported that higher enterolactone levels in
prostatic fluid were associated with populations with a low risk
of prostate cancer. In a small clinical study, prostate cancer cell
proliferation decreased and apoptosis increased in men fed 30
g of flaxseed per day (Demark-Wahnefried and others 2001). A
significant factor which may have influenced their study was that
the subjects were on a low-fat diet.

A subsequent study by those authors further supported the role
of flaxseed in combination with a low-fat diet as a means to
control prostate growth (Demark-Wahnefried and others 2004).
In this study, prostate-specific antigen level and cell proliferation
both decreased from baseline after only 6 mo on the dietary
regime.

Colon and skin cancer. Although not extensively evaluated,
flaxseed has been shown to inhibit colon and skin cancers in cell

cultures and in animal studies as reviewed by Thompson (2003)
and Morris (2003).

Danbara and others (2005) reported that a 10 mg/kg dose of
enterolactone, by subcutaneous injection 3 times per week, re-
duced the expression of colon 201 human colon cancer cells
in athymic mice. Using various testing protocols, Danbara and
others (2005) concluded that the tumor suppression was due to
apoptosis and decreased cell proliferation. In general, flaxseed
may be a valuable tool in the fight against various cancers. Fur-
ther research is needed in clinical settings to support the role of
flaxseed in cancer prevention in human populations.

Diabetes prevention. Low-glycemic-index foods containing
soluble fiber may not only prevent certain metabolic ramifications
of insulin resistance, but also reduce insulin resistance (Reaven
and others 1993). Soluble fiber and other components of flaxseed
fractions could potentially affect insulin secretion and its mech-
anisms of action in maintaining plasma glucose homeostasis.
Flaxseed was shown to reduce the postprandial blood glucose
response in humans (Cunnane and others 1993; Jenkins and oth-
ers 1999). A consumption of 50 g/d ground flaxseed by young
females over a 4-wk period caused a reduction in blood glucose
levels (Cunnane and others 1993). Similar findings were observed
in postmenopausal women fed a 40 g/d flaxseed fortification diet
(Lemay and others 2002). Bread containing 25% flaxseed gave
a glycemic response that was 28% lower than the control (no
flaxseed) bread (Jenkins and others 1999).

Prasad and others (2000) reported that rats fed 22 mg SDG/kg
and treated with the diabetes-promoting chemical streptozo-
tocin had 75% lower incidence of type-1 diabetes than the
streptozotocin-treated control group. However, the serum glu-
cose of the SDG plus streptozotocin-treated rats had significantly
higher serum glucose levels than the streptozotocin-treated con-
trol group.

Antinutrients. Flaxseed has several compounds that may neg-
atively influence health and well-being. In some cases, the
negative impact might simply be an assumption based on lit-
erature reports of similar compounds from other foods. The 2
components that have been questioned most frequently are the
cyanogenic glycosides and linatine, an antipyridoxine factor.

Cyanogenic glycosides are not exclusive to flaxseed. These
compounds can be found in a number of plants including brassica
vegetables and especially cassava. Many of the health concerns
regarding cyanogenic glycosides stem from studies showing that
cassava was toxic to animals and humans (McMahon and others
1995). However, cassava contains significantly more cyanogenic
glycosides than flaxseed. Furthermore, the release of hydrogen
cyanide from flaxseed would be minimal and below the toxic
or lethal dose. At the recommend daily intake of about 1 to 2
tablespoons, approximately 5 to 10 mg of hydrogen cyanide is
released from flaxseed, which is well below the estimated acute
toxic dose for an adult of 50 to 60 mg inorganic cyanide and
below the 30 to 100 mg/d humans can routinely detoxify (Rosel-
ing 1994). Daun and others (2003) reported that a person would
have to consume 8 cups (1 kg) of ground flaxseed to achieve
acute cyanide toxicity.

In addition to cyanogenic glycosides, trypsin inhibitor, linatine,
and phytic acid are other antinutrients contained in flaxseed.
Trypsin inhibitor activity (TIA) in flaxseed was low when com-
pared to those in soybean and canola seeds. Bhatty (1993) re-
ported laboratory-prepared flaxseed meals containing 42 to 51
units of TIA, which was slightly higher than 10 to 30 units
observed by Madusudhan and Singh (1983) and commercially
obtained flaxseed meal (14 to 37 units). The contents of phytic
acid were significantly different among cultivars. AC Linora has
the lowest phytic acid content of 2280 mg/100 g and low
ALA yellow-seeded cultivar Linola 947 has the highest content
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(3250 mg/100 g seed) among the 8 cultivars examined (Oomah
and others 1996).

Kratzer (1946) reported that pyridoxine supplementation in
chicks on diets containing linseed meal was necessary to coun-
teract their vitamin B6 deficiency. Klosterman and others (1967)
identified the antipyridoxine factor linatine. Although linatine is
a problem in chicks, flaxseed has not been associated with a
vitamin B6 deficiency in humans. In fact, no effect on serum
pyridoxine levels in subjects consuming 45 grams of flaxseed per
day over 5 wk has been observed (Dieken 1992).

Conclusions
Phytoestrogens, such as lignans, which act as either estrogen

agonists or antagonists have generated interest because of their
potential use in hormone replacement therapy and cancer pre-
vention. Mammalian lignans are produced by the action of gut
microflora on precursors such as the plant lignan SDG. Flaxseed
lignans have potential antioxidant advantages in that they are
natural antioxidants with potential health benefits. This review
provides a better understanding of the flaxseed antioxidant ac-
tivities and suggests that flaxseed lignans may be used as natural
antioxidants. More in vivo studies are needed to ascertain the pro-
pitious effects of lignans secoisolariciresinol and to see if there
are any dangers in possible overdoses.
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