
Clemson University
TigerPrints

All Theses Theses

8-2011

Dynamics and Control of the Shoot-the-Moon
Tabletop Game
Peng Xu
Clemson University, pxu@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Robotics Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Xu, Peng, "Dynamics and Control of the Shoot-the-Moon Tabletop Game" (2011). All Theses. 1209.
https://tigerprints.clemson.edu/all_theses/1209

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1209&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/1209?utm_source=tigerprints.clemson.edu%2Fall_theses%2F1209&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Dynamics and Control of the Shoot-the-Moon
Tabletop Game

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Electrical Engineering

by

Peng Xu

August 2011

Accepted by:

Dr. Richard E. Groff, Committee Chair

Dr. Timothy Burg, Co-Chair

Dr. Darren Dawson

Abstract

The classic table-top game Shoot-the-Moon has interesting dynamics despite

its simple structure, consisting of a steel ball rolling on two cylindrical rods. The

two sloped rods are hinged at the lower ends and allowed to freely slide in a slot at

the higher end. The ball can amazingly roll upward along the rods under carefully

manipulation of the rods. There is also an interaction between ball rotation and

translation that cause the ball to “shoot” (quickly accelerate).

In this thesis, the kinematics are developed for Shoot-the-Moon and then equa-

tions of motion are derived using both Lagrangian and Newtonian approaches. The

modeling work yields an examine the underactuated, nonlinear, nonholonomic dy-

namic model for Shoot-the-Moon.

Two controllers are designed based on the dynamic model. The Linearized

Position Regulator is developed using a local linearization at an equilibrium point of

the dynamics. The Position Tracking Controller takes nonlinearities into account by

inverting the significant nonlinear terms in the dynamics so that the system appears

linear at the input and can be controlled using a PD controller. Simulations of both

controllers are performed, showing that the ball converges to the setpoint for the

linearized controller and continuous signals can be tracked by the nonlinear controller.

An experimental platform, an automated Shoot-the-Moon game controlled

using the Position Tracking Controller, is built to facilitate understanding of the

ii

dynamics, explore the nonholonomic property of the system and demonstrate efficacy

of the proposed controllers.

Experiment results are presented showing the effectiveness of the controller on

the physical system. The results are compared with simulations under same conditions

in order to highlight the fidelity of the dynamic model. The effect of the nonholonomic

constraint relating the ball’s linear and angular position is also demonstrated.

Shoot-the-Moon is a familiar system with rich dynamics. Moreover, it is one

of the simplest system that shows nonholonomic properties and has substantial non-

linearity in dynamics. As such, it can provide an appealing challenge problem for

control design techniques and serve as a new educational tool.

iii

Dedication

This thesis is dedicated to my parents, who provide me with their best, give

me maximum reasonable freedom through my growth, and encourage me during my

hard times.

iv

Acknowledgments

First, I would like to express my sincere gratitude to my co-advisor Dr. Richard

Groff and Dr. Timothy Burg for providing me with the opportunity of participating

in this research and their motivation and patience throughout this project. Their

always available guidance helped me in all the time of research and writing of this

thesis.

Besides my advisors, I would like to thank my committee member Dr. Darren

Dawson, for his encouragement and insightful comments.

I would also like to give my thanks my labmates, Ninad Pradhan, Appoorva

Kapadia, Darshana Salvi, Pallavi Srikanth for the stimulating discussions and encour-

agement through their interests in this project.

Lastly, and most importantly, I wish to thank my parents, Jianxin Xu and

Yongqing Guo, for their support and love.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 The Shoot-the-Moon Game . 2
1.2 Previous Work . 3
1.3 This Work . 5
1.4 Impact of this Research . 6

2 Model Development . 7
2.1 Preliminaries and Notation . 7
2.2 Assumptions . 8
2.3 Kinematics . 10
2.4 Dynamic Model by the Lagrangian Approach 15
2.5 Dynamic Model by the Newtonian Approach 17

3 Controller Design . 20
3.1 Linearized Position Regulator . 20
3.2 Augmented Linearized System . 22
3.3 Nonlinear Controller . 23
3.4 Simulation . 27
3.5 Conclusion . 31

4 Experiment Testing . 32
4.1 Experiment System Architecture . 32

vi

4.2 Experiment Results . 50

5 Conclusions . 55

Appendices . 57
A CAD Drawing of the Mechanism . 58

Bibliography . 60

vii

List of Tables

2.1 List of notation. 9

4.1 A list of APIs in the driver and brief introduction of their functions. . 36
4.2 Motor Specification . 47

viii

List of Figures

1.1 Shoot-the-Moon Game Board . 2

2.1 Top view and front view of Shoot-the-moon game with rod coordinate
system Ω. In the front view, the illustration of the ball needing to roll
“uphill” to reach the scoring zone is apparent. 8

2.2 A 3D view of the ball and rod. Note that T is the point of contact of
the ball with the rod. 11

2.3 A top view of the ball and rod. 12
2.4 An infinitesimal movement of the ball. 14
2.5 Free body diagram of the ball. 18

3.1 Plot of f2 (x, θ) with different x. Variable θ is on the horizontal axis.
The ball drops at the rightmost point of each curve with x ≥ 0.10.
Parameters for this plot are listed in Sec. 3.4. 24

3.2 Definition of some important coordinates on the f2 curve with x = xc. 25
3.3 The desired saturation function ηxc . 26
3.4 A family of curves generated from the saturation function S using

different saturation limit. 27
3.5 Diagram of Position Tracking Controller. In the diagram, T−1 is the

inverse function with x, θp, ẍd as inputs, and θ as output. 27
3.6 Simulation plot of the Linearized Position Regulator. 29
3.7 Simulation plot of Position Tracking Controller with a ramp input. . 30
3.8 Simulation plot of Position Tracking Controller with a sine wave input. 30
3.9 Simulation plot of Position Tracking Controller shows the nonholo-

nomic property of the system. 31

4.1 Picture of experiment setup. The PC running the real-time system
and power amplifier are omitted. 33

4.2 Diagram of the entire experiment system. 34
4.3 Block diagram of the ball state sensor system. 36
4.4 An illustration of reflection geometry. As αi and αr getting smaller,

αe reduces as well. 38
4.5 Illustration of detecting ball position x with Camera 1. 40
4.6 Picture showing the red marker on the ball and the detected marker

in the computer vision program. 43

ix

4.7 Illustration of the Principle Component Analysis to find the anglular
position of the ball. 45

4.8 Illustration of the timing belt driven actuation mechanism. As th left
is attached to the top loop of the belt and the right rod is attched to
the bottom loop, the rods move in opposite direction as the motor turns. 48

4.9 Results of Nonlinear Tracking Controller following a series of set points
from simulation and experiment. 51

4.10 Results of Position Tracking Controller following sine wave trajectory
from simulation and experiment. 52

4.11 Demonstration of the nonholonomic property of the system in simula-
tion and experiment. 53

A.1 Timing-belt rod driving mechanism CAD drawing. 59

x

Chapter 1

Introduction

The Shoot-the-Moon game (see Fig. 1.1) may give people the illusion of break-

ing the laws of physics by rolling a ball “uphill” on two rods. The secret is that the

interaction between the shape of the ball and the angle between the two rods forms

an extra slope, which, combined with the apparent, visible slope of the rods, create

a virtual slope for the ball. The ball moves down the virtual slope, which, depending

on ball location and rod separation, may be in the opposite direction from the visible

slope. Moreover, the virtual slope can be reshaped by manipulating the rods, which

is equivalent to changing the force acting on the ball. This can be used to control

ball position and velocity.

This game is similar to the “ball-and-beam”, another famous control and dy-

namics plant widely used in education [1], yet is more akin to “rolling disk” or “unicy-

cle” problem [2] in that they all have rolling constraint which leads to nonholonomic

system dynamics.

1

Figure 1.1: Shoot-the-Moon Game Board

1.1 The Shoot-the-Moon Game

Shoot-the-Moon game is a classic wooden board game addictive to both adults

and children. It belongs to a category of skill games, for which performance is pri-

marily related to the mental or physical skill of the player instead of only chance.

In this particular case, a player’s fine motor skill and familiarity with the dynamic

behavior of the game are critical for achieving higher scores. The exact history of its

creation cannot be found, however multiple sources suggest that is has been popular

since the 1940s.

The design of the Shoot-the-Moon game board varies from manufacturer to

manufacturer; however, the basic structure is the same. A model from Wood Ex-

pressions Inc is shown in Fig. 1.1. Two round and smooth rods are mounted above,

but not parallel to, a rectangular game board base. The lower ends of the rods are

hinged vertically by screws or other mechanisms. The high ends can slide freely in

a horizontal slot or support. The space between the two rods at the pinned ends is

smaller than the diameter of the polished steel game ball. The ball could be placed

2

at any point on these two rods if they are held parallel or slightly separated.

At the beginning of play, the ball is placed at pinned ends of the rods. Players

adjust the width between two rods at the free-moving ends in order to move the ball

up the slope while avoiding prematurely dropping the ball. Performance is gauged by

dropping the ball in one of a series of holes, with farther holes assigned higher scores.

Although the theory of play is simple, few people manage to get high scores

without practice. It is partially because human hands lack the ability to actuate

objects precisely and quickly and the ball will drop as a result, especially when the

ball is closer to the higher end, where the margin for error is very narrow. Another

source of difficulty comes from the nonlinear dynamics of the ball, which may confound

the expectations of an untrained player.

A trick of playing this game is a dynamic strategy: initially open the rods

wide to let the ball accelerate fast; then quickly close the rods so that energy stored

in the ball rotation is transfered to linear movement (the ball will suddenly obtain

a high velocity); keep the rod close until the ball reaches the higher end; and then

drop at the desired location. In this way, kinetic energy is imparted to the ball in the

early stage, where the margin for error is still wide, and the user can “play it safe”

afterwards.

1.2 Previous Work

Shoot-the-Moon, despite its popularity and essence of a game involving dy-

namics, is seldom mentioned in the control and modeling literature. Neither dynamics

nor control algorithms for the Shoot-the-Moon game appear to have been published.

In [3], the Shoot-the-Moon game is mentioned for its potential in dynamics educa-

tion, yet no specific dynamic model or controller design is presented. In our previous

3

conference paper [4], the Shoot-the-Moon dynamic model is derived and some simu-

lation results of controllers are shown. This thesis will describbe in more detail both

simulation and physical experiment results as well as the experimental platform.

The Lagrangian and Newtonian approaches used for deriving rigid body dy-

namic model are standard and well described in textbooks focusing on classical dy-

namics [5, 6, 7]. The Newtonian method is natural and focuses on effects of forces on

objects with inertia but does not easily scale up for systems with many rigid bodies

interacting with each other. The Lagrangian approach avoids internal force analysis

by only considering total energy of the whole system and thus is suitable for deriving

dynamics of systems with interactions of multiple objects. Moreover, the Lagrangian

approach is also more systematic and is thus more amenable to using computer sym-

bolic algebra software to perform the dynamics derivation. However, Shoot-the-Moon

is a simple system and both methods can be used. Notice the system has a nonholo-

nomic rolling constraint and thus a Lagrangian multiplier should be introduced in

the Lagrangian approach to represent the force that relate the linear and angular

movement of the ball. System linearization and state-space linear system analysis

techniques used in the controller development chapter are well illustrated in linear

control books such as [8, 9].

Methods in computer vision are utilized in the experimetal platform for ball

linear and angular position sensor development. Camera calibration algorithms [11,

12, 13] greatly simplify the measurement of the intrinsic and extrinsic parameters of

the camera. Extrinsic parameters are the 3D transformation between world frame

and a frame attached to the camera and the intrinsic parameters describe how to

project 3D points in the camera frame onto the image plane. These parameters

are necessary for establishing the conversion from 2D image coordinates to ball linear

position. Principle component analysis (PCA) is a data dimension reducing tool based

4

on statistics [14, 15]. PCA can be used to extract samples distribution information

in the state space. In ball angle sensing, pixels representing a slender color marker

attached on the ball are treated as samples. The pixel locations are fit into 2D

gaussian and parameters of the gaussian is extracted with PCA to determine the

angle of the marker.

1.3 This Work

In this work, the dynamic model of the Shoot-the-Moon game is derived us-

ing both Lagrangian and Newtonian method under realistic assumptions about the

physical property of the game board components in Chapter 2.

Two controllers are designed based on the dynamic model in Chapter 3. The

Linearized Position Regulator is developed using a local linearization at an equilibrium

point of the dynamics. The Position Tracking Controller takes nonlinearities into

account by inverting the significant nonlinear terms in the dynamics so that the

system appears linear at the input and can be controlled using a PD controller.

Simulations of both controllers are performed, showing that the ball converges to the

setpoint for the linearized controller and continuous signals can be tracked by the

nonlinear controller.

Chapter 4 shows that an experimental platform, an automated Shoot-the-

Moon game controlled using the Position Tracking Controller, is built to facilitate

understanding of the dynamics, explore the nonholonomic property of the system and

demonstrate efficacy of the proposed controllers. Experiment results are presented

showing the effectiveness of the controller on the physical system. The results are

compared with the simulations under same conditions to highlight the fidelity of the

dynamic model. The effect of the nonholonomic constraint relating the ball’s linear

5

and angular position is also demonstrated via a sinusoidal reference trajectory.

The final conclusions are found in Chapter 5.

1.4 Impact of this Research

Shoot-the-Moon is a tabletop game that appeals to a broad audience. This

thesis contains the Shoot-the-Moon nonholonomic dynamic model derivation and con-

troller design which could greatly benefit control system education and nonholonomic

control research.

The experimental platform is simple and can be constructed at low cost. This

makes it an ideal example in classroom presentation that stimulate students’ interest

about dynamic systems. It can also be used in a laboratory for students to experiment

with various control techniques and compare their difference.

The dynamic model of the game is also useful as a standard plant for non-

holonomic control research and can play a similar role to the rolling disk, unicycle, or

car problems. Since a system requires at least two-degree-of freedom to have a non-

holonomic constraint, Shoot-the-Moon is one of the simplest nonholonomic systems

possible. Moreover, unlike other example nonholonomic systems currently used, the

dynamics of Shoot-the-Moon model is essential for nonholonomic controller design

since it is an underactuated system with one input and two generalized coordinates.

The nonholonomic controller must account for system dynamics in order to control

linear and angular position of the ball.

6

Chapter 2

Model Development

The Shoot-the-Moon dynamic model reveals the source of its counterintuitive

behavior and sets the basis for development of a controller. In this chapter, notation

and a few modeling assumptions are presented, the kinematics of the game is investi-

gated, and then the dynamic model is derived with both Lagrangian and Newtonian

approaches. The results from both methods are identical.

2.1 Preliminaries and Notation

The kinematics of the Shoot-the-Moon game is more complicated than a gen-

eral robotics system in that the position of the ball is determined by the contact

points formed by the ball and the rods, instead of linear or revolution joints. The

existing solutions for resolving robotics kinematics, such as the Denavit-Hartenberg

method, are not very useful in this specific case. It is necessary to use fundamental

geometric relations to describe the kinematics.

A rod coordinate system, noted as Ω, is aligned with the game board to simplify

the notation (see Fig. 2.1). Its origin, O, is located at the center of the pinned ends of

7

z

x

h0
hL

L

θ d0

R

x

y

α

β

O

O

Figure 2.1: Top view and front view of Shoot-the-moon game with rod coordinate
system Ω. In the front view, the illustration of the ball needing to roll “uphill” to
reach the scoring zone is apparent.

the two rods; the x-axis is parallel to the neutral position of the rods (θ = 0); the x-

and y-axis form an inclined plane that contains the motion of the rods; and the z-axis

completes the right-handed coordinate system. Since the game board is stationary

during play, the coordinate system Ω is used as an inertial frame in the derivation of

the dynamic model. All notation is listed in Table. 2.1.

2.2 Assumptions

The derivation of the kinematics and dynamic model is based on the following

assumptions:

1. The rods and ball are rigid.

2. The ball is always on the rods, i.e. z > 0 and the normal force Fn ≥ 0. Note

that for z ≤ 0, the rods do not support the ball and for Fn < 0 the motion of

8

Table 2.1: List of notation.

Notation Description

x, y, z The position of the ball’s center of gravity, C, in rod frame Ω.

β The rotation angle of the ball about the y-axis. Since the ball is sym-
metric, it is defined that β = β0 at t = 0, where β0 ∈ R can be any
value.

h The height of the ball’s center of gravity with O as reference point.

θ The angle between the rods and the x-axis.

d0 The distance between the fixed point of the rods, D, and the origin, O.

L The length of the game board from the lower end to the higher end,
measured in the horizontal plane.

h0 The height of point O from the base of the game board.

hL The height measured from the base of the game board to the slot in
which the rods slide.

α The constant angle between the x-axis and the horizontal plane. With
geometry, α = arctan hL−h0

L
.

R The radius of the ball.

r The radius of the cylindrical rods.

m The mass of the ball.

J The moment of inertia of the ball about a rotation axis through its
center.

9

the ball follows a ballistic trajectory that leaves to the rods. Thus, these two

conditions are left out of discussion.

3. The friction between the ball and the rods is sufficient to prevent the ball from

sliding along the rods, but the rods are also able to separate and close freely

under the external input force.

4. The game is played by moving the rods symmetrically with respect to the verti-

cal plane formed by the x-axis and z-axis, so the ball will always have its center

of gravity C in the x-z plane (y ≡ 0). A single variable θ is used to describe the

angle of each rod relative to the neutral position where the rods are parallel,

and the direction that widens the gap between the two is defined positive.

5. Rod angle θ is treated as the system input, i.e. forces are applied to the rods

to track any θ (t) ∈ C2.

These realistic assumptions rule out unnecessary minutiae from the Shoot-the-

Moon system model without changing the essence of the dynamics.

2.3 Kinematics

This section will show the derivation on the kinematic relationship between

the angle of the rods θ and the position and attitude of ball. With assumption 1, the

z coordinate of the ball is constrained by the x coordinate and θ and will be derived

using the geometric relationships illustrated in Fig. 2.1 and Fig. 2.2.

Let C be the center of the ball and let B be the point on the center line l of

the rod such that CB⊥l. Let Cz be the projection of C onto the x− y plane, and let

B2 be the point on l such that CzB2 is parallel to the y axis. Note that point T , the

10

C

T
B

B2

B3

Cz

x

 l

T1

Figure 2.2: A 3D view of the ball and rod. Note that T is the point of contact of the
ball with the rod.

tangent point between the ball and the rod, lies on CB. Let B3 be the point on the

x-axis such that BB3 is parallel to the y-axis, and let T1 be the projection of T onto

CB3.

The z coordinate of the ball is calculated from the right triangles 4CCzB and

4B2CzB (see Fig. 2.3)

z =
∣∣CCz∣∣ =

√∣∣CB∣∣2 − ∣∣CzB∣∣2
=
√

(R + r)2 − (cos θ ·
∣∣CzB2

∣∣)2

=
√

(R + r)2 − cos2 θ · (d0 + x · tan θ)2

= fz (x, θ) .

(2.1)

11

θ

Cz

O D

x

y

B

B2

B3

d0

rod

 l

r

Figure 2.3: A top view of the ball and rod.

12

The height of the center of the ball with respect to the origin point of Ω is

h = cosα · z + sinα · x.

The rolling constraint of the ball determines the ratio of linear to angular

velocity, ẋ and β̇ respectively, based on the geometry. This ratio is defined as the

effective radius,

Reff ,
ẋ

β̇
. (2.2)

Reff is solved by considering an infinitesimal rotation, ∆β, of the ball (see Fig. 2.4).

The change in x is ∆x. The center of the ball moves from C to C ′ along an arc with a

length of ∆d. The radius of the arc is called the equivalent radius Req =
∣∣CT1

∣∣, which

is the projection of CT on the x-z plane (see Fig. 2.2). Thus, from the geometry we

have

∆β ·
∣∣CT1

∣∣ = ∆d, (2.3)

and from the definition of Reff , we have

∆β ·Reff = ∆x. (2.4)

By the similarity between 4CB3B and 4CT1T ,

Req∣∣CB3

∣∣ =

∣∣CT ∣∣∣∣CB∣∣ =
R

R + r
.

And from the similarity between 4CB3Cz and 4C ′CC2,

∆x

∆d
=

∣∣CCz∣∣∣∣CB3

∣∣ .

13

C

T1

B3

C’

Δx

Δd

curve of

z(x,θ)

z

x
Δβ

rod

ball

Cz

C2

Figure 2.4: An infinitesimal movement of the ball.

Thus,

Reff =
∣∣CB3

∣∣ · R

R + r
·
∣∣CCz∣∣∣∣CB3

∣∣ =
R · z
R + r

. (2.5)

Note that Reff is not constant, but varies with z, and hence x and θ. From Eqn.

(2.2), we have, the expression for β̇,

β̇ =
ẋ

Reff

; (2.6)

β̈ is found by taking the time derivative of β̇,

β̈ =
d

dt

(
ẋ

Reff

)
=
ẍ ·Reff − ẋ R

R+r
ż

R2
eff

. (2.7)

Further information can be derived from the kinematics stated above. Since

∂h
∂x

= cosα · ∂z
∂x

+ sinα , ∂z
∂x

is the “extra” slope created by the two rods, calculated by

14

taking the partial derivative of (2.1),

∂z

∂x
= −cos θ · sin θ · (d0 + x · tan θ)

z
. (2.8)

Similarly, ż and z̈ are defined as,

ż = ẋ
∂z

∂x
+ θ̇

∂z

∂θ
, (2.9)

z̈ = θ̈
∂z

∂θ
+ ẍ

∂z

∂x
+ ẋ2 ∂

2z

∂x2
+ 2θ̇ẋ

∂2z

∂x∂θ
+ θ̇2∂

2z

∂θ2
. (2.10)

2.4 Dynamic Model by the Lagrangian Approach

The kinematics analysis provides several constraints on movement of the ball.

• Position Constraints: There are two positions constraints on the ball movement.

Equation (2.1) imposes a constraint on z, and from assumption 4, y = 0.

• Rolling Constraints: There are two contraints on the rolling motion. First, the

game is symmetric about the x-z plane, thus the ball will only rotate about the

y-axis, the angle is denoted by β. Second, Eqn. (2.6) is a constraint relating ẋ

and β̇. This constraint cannot be reduced to a constraint on positions alone, i.e.

it cannot be rewritten in the form f(x, β, t) = 0, and thus it is a nonholonomic

constraint.

An unconstrained ball has 6 degrees-of-freedom from translational and rota-

tional movement. Subtracting the 2 constraints on linear position and 2 constraints on

angular position, the ball has 2 remaining degree-of-freedom. Thus, two generalized

coordinates, x and β, are required in the Lagrangian dynamics.

15

The Lagrangian L is given by

L = T − V, (2.11)

where

T =
1

2
m
(
ẋ2 + ż2

)
+

1

2
Jβ̇2 (2.12)

is the kinetic energy and

V = mgh = mg (cosα · z + sinα · x) (2.13)

is the potential energy.

Because of the nonholonomic rolling constraint in Eqn. (2.2), a Lagrange

multiplier λ is introduced to represent the unknown forces ensuring the constraint.

From Eqn. (2.6), the coefficients of λ in the Lagrangian equation are

aβ = Reff

ax = −1.

With the nonholonomic constraint taken into account, the Lagrangian equa-

tions are:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
− 1 · λ = 0, (2.14)

d

dt

(
∂L

∂β̇

)
− ∂L

∂β
+Reff · λ = 0. (2.15)

Solving for ẍ from these two equations, eliminating λ in the result, and then substi-

tuting in β̇ and β̈ from Eqn. (2.6) and (2.7) yields the dynamics of x. Together with

16

dynamics of β stated in (2.6), the complete dynamics of the ball are

ẍ =
−mg sinα + P −m ∂z

∂x
(g cosα +Q)

I

= f1

(
x, ẋ, θ, θ̇, θ̈

)
,

β̇ =
ẋRr

z
,

(2.16)

where

Rr =
R + r

R
,

z =
√

(R + r)2 − cos2 θ · (d0 + x · tan θ)2,

P = JR2
r ẋżz

−3,

Q = θ̈
∂z

∂θ
+ θ̇2∂

2z

∂θ2
+ 2ẋθ̇

∂2z

∂x∂θ
+ ẋ2 ∂

2z

∂x2
= z̈ − ẍ ∂z

∂x
,

I = JR2
rz
−2 +m

[
1 +

(
∂z

∂x

)2
]
.

2.5 Dynamic Model by the Newtonian Approach

This section shows the Newtonian solution for the dynamics of the Shoot-the-

Moon. While the Lagrangian approach provides the simplicity of not explicitly dealing

with the force interaction between rods and ball at the contact point, the Newtonian

method offers an opportunity to find out the physical explanation of each term in the

dynamics equation. Deriving identical dynamics using two distinct approaches also

helps validate the derivations.

Force analysis of the ball is shown in Fig. 2.5, where Fn denotes the supporting

force normal to ball linear velocity v, Ff is the sum of friction force on both rods

17

z

x

C

Ff

Fn

v

T mg

γ

α

Figure 2.5: Free body diagram of the ball.

projecting onto the x-z plane, mg is the gravitational force, and γ is the angle from

the Fn vector to the +z vector.

Applying Newton’s law on the ball along the x- and z-axes yields

− sinα ·mg + sin (−γ)Fn − cos γFf = mẍ, (2.17)

− cosα ·mg + cos γ · Fn + sin (−γ)Ff = mz̈. (2.18)

Summing up the moments at the center of gravity of the ball, there is

Jβ̈ = ReqFf , (2.19)

where Req =
Reff

cos γ
. Thus,

Ff =
Jβ̈

Req

=
J cos γβ̈

Reff

. (2.20)

18

Substitute β̈ from (2.7),

Ff =
J cos γ (Reff ẍ−R−1

r ẋż)

R3
eff

. (2.21)

From the geometry shown in Fig. 2.5 and Fig. 2.4, it is clear that

tan γ =

∣∣CzB3

∣∣∣∣CCz∣∣ = −cos θ · sin θ (d0 + x tan θ)

z
. (2.22)

Comparing to (2.8), there is

tan γ =
∂z

∂x
. (2.23)

Eliminating Fn by calculating (2.17)+ tan γ·(2.18), then substituting (2.21) into the

result and rearranging terms yields

mẍ = −mg sinα− J (ẍReff −R−1
r ẋż)

R3
eff

−m tan γ(z̈ +mg cosα). (2.24)

Substituting (2.23) and (2.10) into (2.24), and then collecting all terms with ẍ to the

left side of the equation produces

Iẍ = −mg sinα + JR2
rz
−3ẋż −m∂z

∂x
(g cosα +Q) , (2.25)

which is identical to the solution from the Lagrangian approach in (2.16).

19

Chapter 3

Controller Design

Two controllers for the ball’s linear position x are proposed in this chapter.

The Linearized Position Regulator is designed to regulate the position of the ball

locally based on system linearization of the system at an equilibrium point. The

Position Tracking Controller inverts the nonlinearities in the dynamics and achieves

tracking control of the position of the ball.

3.1 Linearized Position Regulator

Rewriting the dynamic equation (2.16) in state space form, with state W =

[w1, w2]T = [x, ẋ]T and input θ, produces

Ẇ =

 w2

f1

(
x, ẋ, θ, θ̇, θ̈

)
 , (3.1)

where f1

(
x, ẋ, θ, θ̇, θ̈

)
is given in Eqn. (2.16). Linearizing the system at an equilib-

rium point

W = [xe, 0]ᵀ = We and θ = θe (3.2)

20

where, xe is any possible x coordinate of the ball and θe satisfies

f1 (xe, 0, θe, 0, 0) = 0.

After substituting the equilibrium point into f1, the equation simplifies to

sinα + cosα · ∂z
∂x

(xe, θe) = 0, (3.3)

which is equivalent to a horizontal virtual slope at xe,
∂h
∂x

(xe, θe) = 0. Given xe, it is

possible to find θe by solving Eqn. (3.3).

The linearized system is defined with state δW = W−We and input δθ = θ−θe,

with state equation,

δẆ = A · δW +B · δθ,

where,

A =

 0 1

∂f1
∂w1

∂f1
∂w2

 , B =

 0

∂f1
∂θ

 .
Evaluating A and B at the equilibrium point stated in (3.2), we have,

A =

 0 1

a21 0

 , B =

 0

b2

 , (3.4)

where,

a21 = −
mg cosα · ∂2z

∂x2
(xe, θe)

I
, (3.5)

b2 = −
mg cosα · ∂2z

∂x∂θ
(xe, θe)

I
. (3.6)

21

The controllability matrix M =

[
B AB

]
indicates the system is control-

lable because rank(M) = 2. Common linear controller design techniques can be

applied directly on the linearized system. Pole placement is used to design a full

state feedback control for the linearized system. The poles are placed at p1 and p2 for

δw1 and δw2 respectively. Therefore, the control law will be δθ = −K · δW . Solving

equation ∆A−BK (s) = (s−p1)(s−p2) for the control gain K =

[
k1 k2

]
, we have,

K =

[
p1p2 + a21

b2

−
p1 + p2

b2

]
. (3.7)

Since the system is linearized at a certain pair of (xe, θe), it only works well when

x ≈ xe and θ ≈ θe. In the other words, when x is too far from xe for the linearization,

the control gain obtained from the pole placement calculation no longer yields the

expected close-loop system response. Naturally, gain scheduling can be implemented

to compensate by actively re-linearizing the system in runtime and evaluating the θe,

a21, and b2 for the x at that time.

3.2 Augmented Linearized System

If the states of the system are augmented by adding in the ball rotation angle

β. The states becomes W = [w1, w2, w3]ᵀ = [x, ẋ, β,]ᵀ , and the system state equation

is

Ẇ =


w2

f1

(
w1, w2, θ, θ̇, θ̈

)
w2·Rr

z

 .

22

Linearizing this system with respect to the augmented equilibrium point from (3.2)

gives

A =


0 1 0

a21 0 0

0 a32 0

 , B =


0

b2

0

 ,

where, a21 and b2 are the same expressions as in (3.5) and (3.6), and a32 = Rr

z
.

This system is uncontrollable since the rank of its controllability matrix M =[
B AB A2B

]
is 2, less than the number of the state variables, which is 3. The

range space of M is span ([1, 0, a32]ᵀ , [0, 1, 0]ᵀ). In other words, only one of two states,

x and β, can be independently controlled locally, because linearization hides the

nonholonomic nature of the constraint.

3.3 Nonlinear Controller

The Position Tracking Controller causes the ball position x to track a reference

trajectory xr. The controller achieves this by selecting a desired acceleration ẍd for

the ball based on the errors in current ball position and velocity, i.e.

ẍd = kp (xr − x) + kd (ẋr − ẋ) .

This is the form of a standard PD controller. The controller then computes the rod

angle θ to generate that acceleration. The structure of the controller is shown in Fig.

3.5.

It remains to find the rod angle θ for a given acceleration ẍd. The complexity

of the dynamics model make it impossible to find the θ that satisfies the desired

23

0 0.01 0.02 0.03 0.04 0.05 0.06

−0.2

−0.1

0

0.1

0.2

θ (rad)

f
2

x = 0.44
x = 0.30

x = 0.10

x = 0.20

x = 0.00

Figure 3.1: Plot of f2 (x, θ) with different x. Variable θ is on the horizontal axis. The
ball drops at the rightmost point of each curve with x ≥ 0.10. Parameters for this
plot are listed in Sec. 3.4.

trajectory by directly solving the original dynamics equation in (2.16). However, some

of the nonlinear terms play a trivial role in the dynamics, and ignoring them during

controller development helps to simplify this process without sacrificing performance

of the resulting closed-loop system.

We approximate the system by assuming x and θ are slowly varying signals,

so that in (3.1), the P and Q terms that constitute f1(·) in (2.16), which contain

first and second derivatives of x and θ, are dominated by the relatively long lasting

terms mg sinα and g cosα. Thus, P and Q are dropped and the approximated system

dynamics becomes

 ẇ1

ẇ2

 =

 w2

f2 (x, θ)

 , (3.8)

where,

f2 (x, θ) =
−mg sinα−mg cosα · ∂z

∂x
(x, θ)

I (x, θ)
. (3.9)

Therefore, the control problem is reduced into a task of finding the θ that

24

θ

θmax θmin

f2

θpeak θdrop

x=xc

Figure 3.2: Definition of some important coordinates on the f2 curve with x = xc.

satisfies f2 (x, θ) = ẍd. Considering f2 is not monotonic on θ for constant x (see

Fig. 3.1), it is impossible to find a unique f−1
2 . However, considering the nature of

this problem, an exact inverse is not necessary for the controller development. f2 is

monotonic on θ in a subrange. In Fig. 3.2, θmax and θmin are the constant absolute

maximum and minimum values for θ dictated by the construction of the game board;

θdrop (x) is the angle that the ball at xc will drop between the rods; and θpeak (x) is the θ

that maximizes f2 at xc. Clearly, f2 is monotonic on θ ∈ [θmin, θpeak], where all possible

f2 values in [f2min, f2max] are covered. Beyond this region, θ is either not attainable on

the physical game board or does not improve the performance. A function g2 (x, θ),

which is the same as f2, but with a smaller domain {(x, θ) |θ ∈ [θmin, θpeak]}, is defined

for later use due to its monotonicity for constant x. Let Txc (θ) = g2 (xc, θ), the

appropriate θ can be easily found by calculating its inverse,

θ = T−1
xc (ẍd) . (3.10)

The range of Txc (θ) is the same as g2 (x, θ) under the condition x = xc, which

is [g2 (xc, θmin) , g2 (xc, θpeak)]. The desired acceleration ẍd may go beyond this range

and pose a problem in finding the appropriate θ. Thus, a saturation function ηxc (ẍd)

is introduced to make the control law well defined. Recall that θ is a variable defining

25

ζ

η

blower

bupper

η = ζ

Figure 3.3: The desired saturation function ηxc .

the angle between two rods. Since θ is a control input, it should be at least continuous

to its second derivative, which means the saturation function ηxc (ẍd) must be C2 as

well. Moreover, as a saturation function, the output should be close enough to the

input if the input is far away from the clipped region, i.e. |ζ − ηxc (ζ)| < ferror(ε),

if bupper−blower

2
−
∣∣∣ζ − bupper+blower

2

∣∣∣ > ε, where bupper and blower are upper and lower

bounds for the saturation function. It is also desirable to have ηxc (0) = 0. With

these requirements on the saturation function, it should appear similar to Fig. 3.3.

The saturation function η is constructed using the hyperbolic tangent function

S (t) = tanh (t), which saturates at t = 1 and has a slope of 1 near t = 0. Since

η is not symmetric about the origin as normal saturation functions, scale factors

are used to shape the curve: ηxc with saturation point blower = Txc (θmin) < 0 and

bupper (xc) = Txc (θpeak (xc)) > 0 is easily defined with S as

ηxc (ζ) =


bupper · S

(
1

bupper
· ζ
)
, ζ < 0,

−blower · S
(
− 1
blower

· ζ
)
, ζ ≥ 0.

(3.11)

Plots of the ηxc function are shown in Fig. 3.4 for several shape parameters. Clearly,

ηxc and its first derivative are continuous. The second derivative of ηxc is also con-

26

−1 −0.5 0 0.5 1 1.5 2

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.4: A family of curves generated from the saturation function S using different
saturation limit.

PD

Controller
T-1

Game Plant

x

x
.

xin

xin
. θ xd

..

Figure 3.5: Diagram of Position Tracking Controller. In the diagram, T−1 is the
inverse function with x, θp, ẍd as inputs, and θ as output.

tinuous because d2S
dt2

= 0 at t = 0. With the saturation function in place, the control

law becomes,

θ = T−1
xc (ηxc (ẍd)) . (3.12)

3.4 Simulation

Numerical simulations were conducted using MATLAB/Simulink to demon-

strate the viability of both controllers proposed. The Linearized Position Regulator

was tested with various initial ball positions x0 and the Position Tracking Controller

was assessed with ramp and sinusoid trajectories. An extra simulation was done to

27

show that independent x and β can be achieved by oscillating x, which reveals the

effect of the nonholonomic constraint.

The following system parameters for the simulation were estimated from the

physical Shoot-the-Moon game board used in Chap. 4:

m = 20.8 [g] R = 12.6 [mm]

r = 3.1 [mm] L = 440 [mm]

θmin = −0.01 [rad] θmax = 0.15 [rad]

d0 = 9.4 [mm] α = 0.035 [rad]

J = 1.32× 10−6
[
kg ·m2

]

3.4.1 Simulation of Linearized Position Regulator

The controller was implemented for the system linearized at the equilibrium

point xe = 150 mm. Solving Eqn. (3.3) numerically, yields θe = 0.02385 rad and

Eqn. (3.5) and (3.6) generates, a21 = 0.8782, b2 = 11.8645. The control gain to

place the poles at p1 = −2 and p2 = −4 was calculated from Eqn. (3.7) to be

K =

[
0.478 0.506

]
.

The ball was simulated at different initial locations around the equilibrium

point xe = 150 mm, and the target ball position was 150 mm as well. The results in

Fig. 3.6 showed that the ball position converged to the target position in about 3 s

from the initial positions near the equilibrium point.

28

0 1 2 3 4 5
0.12

0.13

0.14

0.15

0.16

0.17

0.18

t (sec)

x
(m

)

Figure 3.6: Simulation plot of the Linearized Position Regulator.

3.4.2 Simulation of Position Tracking Controller

The Position Tracking Controller was simulated with ramp and sine wave

signals as the reference trajectory. In the simulation, control gains kp = 2, kd = 3

were used.

Figure 3.7 shows the controller tracking performance for a reference ramp

signal with slope 25 mm/s. The initial position of the ball was the start of the rods,

and the initial velocity was zero, (i.e. x (0) = 0 mm and ẋ (0) = 0 mm/s). The

reference trajectory covered the entire range of the rods from 0 mm to 440 mm. The

tracking error reached its peak at the first second while the ball was catching up

with the ramp from rest and then quickly converged to zero. After three seconds, the

error is less than 2 mm and thus it is hard to differentiate the reference and actual

trajectory of the ball.

Figure 3.8 shows the controller tracking performance for a sine wave signal

with frequency 0.5 rad/s, amplitude 40 mm and bias 150 mm. The initial condition

of the ball was x = 150 mm and ẋ = 0 mm/s. The tracking error is largest at the

peaks and troughs of the input sine wave but always less than 5 mm. This error is

29

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

t (sec)

x
(m

)

Actual Ball Position
Ramp Function

Figure 3.7: Simulation plot of Position Tracking Controller with a ramp input.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

t (sec)

x
(m

)

Actual Ball Position
Sine Wave Function

Figure 3.8: Simulation plot of Position Tracking Controller with a sine wave input.

higher than that observed for the ramp input. The increased tracking error could be

attributed to the terms in (3.8) and (3.9) that were neglected during controller design

under the assumption of a slow varying system. Following a sine wave, especially

at the peaks and troughs, requires much higher acceleration than following a ramp

function and so the approximation is not as accurate.

In addition, the controller was fed a sine wave signal with a frequency of 6

rad/s, an amplitude of 150 mm and a bias of 40 mm to show the nonholonomic

property of the system. From Fig. 3.9, we can clearly see that while x oscillates in a

30

0 10 20 30 40 50
−0.02

0

0.02

0.04

0.06

0.08

t (sec)

x
(m

),
β
(5
0
ra
d
)

Ball Position
Ball Angle

Peak of x is static

Peak of β goes down

Figure 3.9: Simulation plot of Position Tracking Controller shows the nonholonomic
property of the system.

small region, β slowly drifts away with oscillation. Therefore, it is probable to achieve

x and β independently in a larger time scale.

3.5 Conclusion

Two controllers were proposed for the Shoot-the-Moon system based on the

dynamic model derived in Chapter 2. The Linearized Position Regulator was designed

to achieve setpoint regulation and the Position Tracking Controller was designed to

force the ball to track a desired trajectory. Computer simulation of both controllers

support their viability. A simulation of oscillation ball position shows the nonholo-

nomic evolution of the ball angle.

31

Chapter 4

Experiment Testing

This chapter will be dedicated to experimentally verifying the mathematical

dynamic model developed in Chapter 2 and the performance of the two controllers

proposed in Chapter 3. A computer controlled manipulator was designed to automat-

ically play an off-the-shelf Shoot-the-Moon game. A picture of the system is shown

in Fig. 4.1. In this chapter, following a brief overview of the system architecture,

each of three subsystems, Ball Sensing, Actuator, and Real-time Control is described

individually.

4.1 Experiment System Architecture

In this section, the autonomous Shoot-the-Moon system is separated into three

subsystems by functionality and described one after another: the ball sensing sub-

system detects the linear and angular position of the ball on the rods; the actuation

subsystem moves the input rods (i.e. plays the game); and the real-time control sub-

system implements control algorithms. These three subsystems cooperate together

(see Fig. 4.2) to implement a closed-loop control of on the real game board. This

32

Figure 4.1: Picture of experiment setup. The PC running the real-time system and
power amplifier are omitted.

setup can be viewed as a hardware-in-the-loop simulation as well, where the hardware

components (game board, servos, sensors) are controlled from a computer implemen-

tation of the control algorithm.

4.1.1 Ball Sensing Subsystem

A sensor is a necessary component for a system to operate in a closed-loop

manner. The variable being controlled in this experiment is the position of the ball

along the x-axis of frame Ω. Since it is desired to compare simulation results based

on modelled dynamics with data from a physical experiment, preserving the original

dynamics of the ball is the primary concern. Moreover, the sensor system has to pro-

vide acceptable resolution, bandwidth, and accuracy within a reasonable cost. Given

these constraints, an image sensor based system built with off-the-shelf webcams is

proposed for this application.

Among hundreds of available webcams in the market, the Sony Playstation 3

33

C 2

Power

 Amp

Controller

on xPC

Target

Motor

UDP DAQ

Card

Belt

Mechanism

Encoder

Analog

Output

Computer

vision on

Windows PC

USB

C 1

Figure 4.2: Diagram of the entire experiment system.

Eye was chosen for its relatively high performance, low cost, and availability. This

camera, which was first manufactured in 2003 by Sony, was originally designed to

work only with the Playstation 3 video game console. It is meant to extend the user

interface of video games through vision-based object and face tracking, where sensor

lag and image quality are both important. Thus it has some special characteristics.

Most importantly, it has a USB 2.0 High-Speed mode connection which supports a

faster frame rate than other webcams targeted for online video chatting. Its maxi-

mum frame rate is 125 FPS under QVGA (Quarter-VGA, equal to 320×240 pixels)

resolution and 75 FPS under VGA (640×480 pixels) resolution [16]. In addition,

it provides output in raw, uncompressed format (YUV 4:2:2), which saves the com-

pression processing time at the camera side and decompression time at the receiver

side. The uncompressed output format also guarentees higher image quality since

image compression algorithms are usually lossy, the compression algorithm often cut

off high-frequency information and blur the resulting image.

34

The drivers for the Sony Playstation 3 Eye (later referred as PS3 Eye) for PC

platform are not supported by its manufacturer. On the Windows platforms, Code

Laboratories provides a user-mode driver based on the WinUSB generic USB driver;

on linux platforms, a community developed open source driver gspca ov534, part

of the video4linux API set, supports the PS3 Eye camera. The Code Laboratories

driver are used in this project. This driver has a free version which is limited to two

concurrent camera connections to one PC. For more cameras on a PC, licenses can

be purchased from CodeLaboratory according to the license agreement document to

support up to 16 cameras on one PC. In this Shoot-the-Moon project, one camera

is needed for linear position sensing and another for angular position measurement.

Thus, the free version is adequate.

The driver provides a set of APIs to control the camera and manipulate its var-

ious parameters, including contrast, exposure time, white balance, resolution, frame

rate, and output format. It also includes features for performing common linear and

nonlinear transformations on the captured image. A list of APIs is shown in Table

4.1

A process diagram (Fig. 4.3) shows the functionality and dataflow of both ball

linear position and angle camera: Camera 1 is used to measure the ball linear position

and Camera 2 is used to measure the ball angle. Although there is a desire to let the

xPC Target run independently without the requirement of external computing power,

camera acquisition and part of the vision processing code must run on the Host PC

(a laptop) because USB video cameras are not supported in xPC Target.

4.1.1.1 Ball Position Sensing

Based on several considerations, Camera 1 is positioned at the upper end of

the game, looking down the x-axis as shown in Fig. 4.1. The mounting position

35

Table 4.1: A list of APIs in the driver and brief introduction of their functions.
API Name Function

CLEyeGetCameraCount Get the number of PS3 Eye cameras on the system.

CLEyeGetCameraUUID Get the Universal Unique Identification(UUID) for a
camera specified, which will be used in creation of cam-
era object.

CLEyeCreateCamera Create camera object with a UUID.

CLEyeDestroyCamera Destroy camera object and release resource.

CLEyeCameraStart Start the camera capturing so it begins pipelining
frames to PC.

CLEyeCameraStop Stop the camera capturing.

CLEyeSetCameraParameter Set camera parameters and linear or nonlinear trans-
form parameters.

CLEyeGetCameraParameter Get current settings of camera.

CLEyeCameraGetFrame Get a latest frame from the camera and store it in pro-
vided buffer.

x, z
Camera 1

VGA, 75
FPS

Camera 2

VGA, 15
FPS

Adaptive

ROI

Color model

based

segmentation

Highlight

point finder

UDP

Principal

Component
Analysis

UDP

Peripheral

Device
PC Workstation xPC Target

Reverse

Transform

Anti-wrap

Filter

β

USB

USB

ROI

Figure 4.3: Block diagram of the ball state sensor system.

36

of the camera may not seem ideal at first look; an overhead location which gives an

image plane parallel to the Shoot-the-Moon might seem more intuitive. However, this

location was chosen to maintain a higher resolution on the region closer to the slot

end of the game board because the ball dynamics in this region are more sensitive

to changes in ball position. It also avoids the glare of overhead flurescent lights in

the laboratory ceiling reflected from the rods. Camera 1 has its focal point located

in the x-z plane and thus extra processing for view angle correction is eliminated.

In addition, the long side of the image sensor is posed along the rods for maximum

resolution along the x-axis. Although theoretically the diagonal of the image sensor is

the longest on the sensor and provides the highest resolution, the programming and

calibration become more complicated. The long side of the frame provides roughly 1

mm of resolution.

The ball has a polished metalic surface and acts likes a perfect convex mirror.

A light sources forms a smaller virtual image behind the mirror surface and appears

to be tiny a highlight dot on the ball due to specular reflection. This bright dot is

easy to identify in a captured image using a simple thresholding approach, and the

small size of the light dot enables an accurate measurement of the ball position.

The light source is positioned close to the camera. This carefully choosen

location is convenient for calculating ball position x in frame Ω from the position of

the specular reflection point in image coordinate system. As Figure 4.4 shows, the

angle between the light source and camera seen from the ball’s location is ao. Angle

of incidence and reflection are ai and ar respectively, where ao = ai + ar, and ae is

the measurement error angle which should be minimized. From the geometry of the

proposed light location and the law of reflection, angle ae � ar and ai = ar, which

leads to ae � 1
2
ao. Thus, given a small ao, ae is very small and can be neglected.

Thus, the specular reflection point H and ball center C are projected to approximatly

37

C

Light source

Camera αr

αi

αe

H

αo

Figure 4.4: An illustration of reflection geometry. As αi and αr getting smaller, αe
reduces as well.

the same location in the image plane.

A forward geometry analysis is helpful for establishing the reverse tranform

from image coordinates to coordinates in the Ω frame. As Fig. 4.5 shows, from

the law of reflection we know the line SH formed by camera focal point S and the

specular reflection H will be perpendicular to the tangential plane σ at the surface

of the ball and we know that extension of SH will go through the ball’s geometric

center C as well.

Let the constant homogeneous transform from frame Ω to the camera frame

κ be κHΩ, the projection transform by the camera is described by

ΠpH = Tcam
(
κHΩ ·Ω pH

)
, (4.1)

where the image plane is noted as Π, Tcam is the camera transformation, and all the

coordinates in this expression are in homogeneous form. Note that, in the image

plane Π, ΠpH is a point in two dimensional space. Although it is represented as a

three dimensional vector, its third component only serves as a scaling factor; in the

other words, ΠpH = [x, y, z]T =
[
x
z
, y
z
, 1
]T

.

In many applications, the ideal pinhole camera model is used where the Tcam

38

is regarded as a linear transformation which can be represented by a 3 × 3 matrix.

However, because the lens distortion of the camera being used is not negligible and the

high accuracy is sought, the camera transformation is decomposed into a linear part,

which captures the major characteristics of the camera, and a nonlinear part, which

accounts for the fact that the lens is not a perfect pinhole camera lens. Following the

convention adopted by the calibration method [17, 11, 13, 12], the decomposition can

be written in methematically as,

Tcam (·) = AcamNcam (·) , (4.2)

where

Acam =


fx αc · fx cx

0 fy cy

0 0 1

 (4.3)

is the linear part that describes an ideal pinhole camera and

Ncam (p) =
(
1 + kc1r

2 + kc2r
4 + kc5r

6
)
pn + dp, (4.4)

is the nonlinear part that accounts for the lens radial and tangential distortion [18, 19].

The term dp is

dp =

 2kc3xnyn + kc4 (r2 + 2x2
n)

2kc4xnyn + kc3 (r2 + 2y2
n)

 (4.5)

and p = [x, y, z]T; pn, the normalized p, is pn = [x/z, y/z, 1]T; and r = x2
n + y2

n.

From the forward geometry described above and the constraints on the ball’s

position, the reverse transform, which accepts a pair of image coordinates and outputs

the ball’s position, can be determined. First, the inverse transform for Tcam can be

39

z

x

Light source

z y

H z = fz (x, θ)

Ω

Κ
Ω Κ

R

RT

S

C

M

Figure 4.5: Illustration of detecting ball position x with Camera 1.

defined as

T−1
cam

(
Πp
)

= N−1
cam

(
A−1
cam ·Π p

)
, (4.6)

where A−1
cam is simply the inverse of matrix Acam and N−1

cam is the inverse of the

nonlinear transformation. Note that though it is difficult to find N−1
cam analytically, it

can be approximated with an iterative method [12].

The inverse of the constant homogeneous tranform from Ω frame to κ frame

is simply the inverse of the matrix, i.e. ΩHκ =
(

ΩHκ
)−1

. With camera inverse

tranformation T−1
cam and ΩHκ, it is possible to determine ΩpH from ΠpH , which is the

image coordinate of the specular reflection point H, by

ΩpH =Ω Hκ · T−1
cam

(
ΠpH

)
. (4.7)

Note that the image coordinate is scalable on its third component. Thus,

instead of getting a single point of ΩpH , a class of points satisfy this equation with

various scale factor. These points form a line that connects point S and H. This fact

40

matches with the experience in the real world: points on the ray starting from the

camera center are all projected onto the same point on the image plane; or a single

point on the image plane represents a ray starting from the camera center.

Since the fact that the ball only moves in the x-z plane, which was assumed

during the dynamic model derivation and dictated by the construction of the driving

mechanism, solving for the ball position, originally a 3D problem, can be treated

as a 2D rather than 3D problems (Fig. 4.5). With the known (through camera

calibration) camera extrinsic parameters, the ΩpS is determined by ΩHκ · [0, 0, 0, 1]T

and ΩpM , which is a point along CS is calculated by ΩHκ · [xc, yc, 1, 1]T. The y

components of ΩpS and ΩpM will be small and only due to system error, and are

discarded when projecting the problem in x − z plane. To simplify the expression,

let (x1, z1) and (x2, z2) be the 2D coordinates of point S and M respectively. The

equation of line MS is

x− x1

x− z1

=
x− x2

x− z2

. (4.8)

From the ball and rod kinemetics model presented in Sec. 2.3, the coordinate

of ball’s geometric center (or CoG) will satisfy (2.1). Since θ is actively actuated, its

value is known during runtime and can be used in solving the ball position. Since

C is at the intersection of the line and curve, coordinate of C satisfy both (4.8) and

(2.1). With some algebra, coordinates of C, x and z, can be found as

x =
−B +

√
B2 − 4AC

2A
. (4.9)

41

where the x = −B−
√
B2−4AC
2A

is an extraneous root.

A = k1 + k2,

B = 2 (k1b1 + k2b2) ,

C = b2
1 + b2

2 −R2
r ,

k1 =
z1 − z2

x1 − x2

,

b1 =
x1z2 − x2z1

x1 − x2

,

k2 = sin θ,

b2 = cos θd0.

4.1.1.2 Ball Angle (β) Sensing

Camera 2 is located at the side of game board to actively monitor the angular

position of the ball. This fixed-positioned camera covers a region from 0 to 200 mm

in the x-direction on the rod. The span is sufficient for observing the nonholonomic

property of the ball dynamics and provides acceptable resolution on the ball for angle

calculation. For a broader sensing region, the camera could be mounted on a sliding

mechanism that tracks the ball position or multiple cameras could be used to cover

the entire region.

The ball is made of steel and is polished, thus few features on the ball can be

detected by the camera for ball angle measurement. To solve this problem, a slender

colored marker is attached to the ball to facilitate the tracking of the ball’s rotation.

The vibrant red color of the mark maintains a good contrast with other objects nearby

and enhances the robustness of the color marker segmentation algorithm.

Segmentation to identify the color marker can be done using a variety of meth-

ods. The constraint is that the algorithm should be relatively fast in order to void too

42

Figure 4.6: Picture showing the red marker on the ball and the detected marker in
the computer vision program.

much delay in the feedback loop. The lighting condition at the ball is quite complex

in the experiment platform. It is a blend of overhead lighting of the laboratory, the

dedicated light source for ball position measurement and their reflections from nearby

objects such as the game board, the steel rods, etc. Thus, working with the RGB

color model directly is not straight forward since all three components are sensitive

to lighting conditions. Color models such as HSL and HSV provide more perceptu-

ally relevant representation of color [20]. Hue component of both HSL and HSV is

invariant to changes in intensity of lighting and thus a good choice for segmenting a

marker with known color. However, the image from the PS3 Eye is in RGB, which

is very common in computer image input and output devices, and converting RGB

into HSL or HSV involves a nonlinear transformation. The conversion algorithms

are usually implemeneted in floating-point arithmatic and are slower than algorithm

that require only fixed-point calculations. An algorithm that is easy to understand

and can be implemented in fixed-point operation with minimal effort is used. This

43

method is similar to the I1, r, g or I1′, I2, I3 method described in [21] and the method

illustrated in [22].

It is assumed that the RGB components will vary linearly with the change of

intensity of white lighting, i.e.


r

g

b

 = I ·


1

G

B

+N, (4.10)

where r, g, b represent the three components of the pixels in the acquired image, and

G, B are components that pertain to a specific color of the color marker, I is a scalar

that describes the lighting intensity, and the vector N is noise that has zero average.

It is a simple linear model and can be used for color segmentation. The parameters

in the linear model are obtained by least square fit of manually labeled pixels on the

color rotation marker, where parameters G, B and the boundary of I, Imin and Imax

are determined. For pixel-based segmentation, the criterion for a foreground pixel is

Imin ≤ r ≤ Imax and |g − r ·G| + |g − r ·G| ≤ Th, where variable Th is a tunable

threshold.

The thresholded image is then passed through the principle component analy-

sis (PCA) to find a best fitting ellipse that covers the foreground blob (see Fig. 4.7).

The vector parallel to the longer axis of the fitted ellipse is used to determine the an-

gle of the marker, which is also the angle of the ball. This approach was illustrated in

computer vision literatures in the work by Sonka el al. [14] and the work by Archarya

et al. [15].

Let the set of n foreground pixels be P = {p1, p2, ..., pn}, where pi = [pix, piy]
T

is pixel i, and pix, piy are its x and y coordinates in the image frame. A frame parallel

44

ball

rod

q=[q1, q2]
T

rod

β

color blob of

marker

fitted ellipse

Figure 4.7: Illustration of the Principle Component Analysis to find the anglular
position of the ball.

to the original image frame with its origin at centroid of the foreground pixels, which

is point p̄ = 1
n

n∑
i=0

pi, is defined. Pixel coordinates in this newly defined frame are

noted as p̃i. Thus, the set P in the original image frame is equivalent to P̃ in the new

frame. Covariance matrix C of P̃

C =
1

n

n∑
i=0

p̃i · p̃Ti (4.11)

summarize its two dimensional distribution. Eigendecomposition of C can separates

the orientation and broadness information as C = QΛQ−1, where Q is the matrix of

eigenvectors and Λ is the diagonal matrix containing eigenvalues. Each eigenvector

represents a distribution axis and its associated eigenvalue is the variance projected

on that axis. The eigenvector q = [q1, q2]T associated with highest eigenvalue λmax is

the orientation of the long axis of the ellipse. The angle of the long axis can be found

by arctan (q2/q1).

The domain of arctan is (−π/2, π/2). If the ball rotates beyond this limit from

45

either boundary, it will wrap back to the opposite boundary. The camera measure-

ment is in discrete time. The output of PCA is denoted as β̃ [n] = % (β (nT)), where

T is the sample period and % (β) = β + mπ ∈
[
−π

2
, π

2

]
, with m ∈ Z, is the wrapping

function. Assuming the sample period is short enough so that
∣∣∣β̇T ∣∣∣ < ∆βth <

π
2

is

always satisfied, a differentiation and summation based anti-wrap algorithm can be

devised as

β̂ [n] = β̃ [0] +
∑

0<i≤n

ς
(
β̃ [i]− β̃ [i− 1]

)
, (4.12)

where ς (·) is the anti-wrap function defined as,

ς (ζ) =


ζ, |ζ| < ∆βth,

ζ + sgn (ζ) · π, |ζ| ≥ ∆βth.

(4.13)

4.1.2 Actuator Subsystem

The actuator subsystem consists a series of mechanisms that couple the move-

ment of the actuator, a DC motor in this project, to the angle between the two rods

of the Shoot-the-Moon game.

During the controller development in Chapter 3, the angle θ is assumed to be

an input which only depends on the states of the ball and control reference. The

interfacing system, as any mechanical system, will have inertia, which can introduce

extra dynamics into the system and affect system behavior. In an extreme case, where

the dynamics of the interfacing system has a higher time constant than the Shoot-

the-Moon system, the system responce will be dominated by the interfacing system

rather than the original system. In contrast, if the interfacing system has a much

faster response than the Shoot-the-Moon dynamics itself, the effect of the additional

dynamics will be negligible.

46

Table 4.2: Motor Specification

Shaft Diameter 6 mm

Rated Voltage 24V DC

Rated Current 180 mA (no load at 4600 RPM), 2.3 A (12 oz.-in. load at 4000 RPM).

Stall Torque 70 oz.-in.

Stall Current 10 A

Encoder Two channel, 400 line/rev, TTL output

The actuator choosen is a Tohoko Ricoh disk shaped DC motor. The spec-

ification of this motor could be found in Table 4.2. The high torque of this motor

enables a direct drive design, where no torque converting gearbox is used, thus elim-

inated the disadvantages of a geared motor. For example, the backlash and parasitic

friction in a gearbox is avoided, which provides a more linear characteristics and the

response time is greatly improved since few moving parts are involved. Also, since the

encoder for position sensing is mounted directly on the output shaft, the actuation

can be more precise. The power for the motor is provided by a Techron 5530 power

amplifier, which converts the low-power signal output from the analog I/O board into

a high power output capable of driving the DC motor.

For safety consideration, several limit switches and an emergency stop button

are included in the system to prevent the mechanism and motor from being damaged

by a faulty control signal from the controller during development.

As illustrated in Fig. 4.8, the interfacing system is based on a timing-belt

driven mechanism. The timing-belt is built with high-tensile strengh fiber substrate

and rubber surface. The teeth on the belt and drive wheel gurantees no slip will

happen during runtime, which is required since the position of motor shaft is measured

and will be used to calculate the angle between the two rods, which is the value

being servoed. Timing belt is also very efficient way to transfer power due to its

47

tensioners

drive wheel

rods timing
belt

attachments

connect to motor

move
with
belt

open rods

Figure 4.8: Illustration of the timing belt driven actuation mechanism. As th left is
attached to the top loop of the belt and the right rod is attched to the bottom loop,
the rods move in opposite direction as the motor turns.

low friction. Two small wheels are used to tension the timing belt and keep a small

distance between top and bottom loops of the belt. The thin attachment wires secure

the two rods to the belt.

The base structure of the mechanism and all passive wheels are built with laser

cut acrylic boards. The driving wheel and shafts are purchased from hobby stores.

A complete CAD drawing for the mechanism is shown in the Appendix A.

4.1.3 Real-time Control Subsystem

A real-time system is a system that enforces certain “real-time constraint” [23,

24] on the execution of software. The delay due to controller computation is usually

not modeled during controller design and thus the real-time execution is implied in

controller implementation. The computation power delivered by modern mainstream

PCs are usually more than enough for controllers that require limited computation

in the control law, such as the two controllers proposed here. In other words, delay

caused by pure computation is not a serious problem. On the contrary, operating

system scheduling is the major contributor for delay in controller program. Modern

computer modular software and hardware components forces information from sensors

48

to travel among buffers and process boundaries before reaching the controller program

that really process it, where each process switch can take up to 10ms. Similar situa-

tions happen in the outgoing branch from the controller as well. Even worse, common

operating systems such as Windows, Unix and Linux are optimized for throughput

and efficiency instead of real-time processing, i.e. their process scheduling time can-

not be exactly specified and varies from time slice to time slice.

A real-time operating system is designed to fit the specific needs for real-

time processing. They tends to have a small and fast running process scheduler

and minimized interrupt handler in device drivers. All heavy computation is offload

to processes, of which priorities can be specified to requirement of the application.

There are many real-time operating systems available, open- or closed-sourced, free

or proprientary, for workstations and embedded systems [25]. Some widely used real-

time OSs includes VxWorks, QNX, RTLinux, eCOS, uC/OS, Symbian and Windows

CE.

The real-time system being used in this project is the xPC Target from Math-

works Inc. The xPC Target is a complete solution for real-time system implemen-

tation of Mathworks that is deeply integrated into MATLAB and Simulink from

the same company. With this integration, it offers many desirable features such as

quick prototyping and implementation, high portability of software, development, and

hardware-in-the-loop (HIL) simulation. From a technical perspective, xPC Target is

based on RTOS-32, a real-time operating system for x86 platform, from On Time

GmbH in Germany. Above RTOS-32, a layer of runtime libraries are provided by

Mathworks to construct a software environment very similar to that on PC, where

normal Simulink simulation is running.

The development of the controller is primarily accomplished with Simulink.

To build binary code for the controlller, the Real-time Workshop Toolbox (part of

49

MATLAB product) first translates the Simulink model, which is a networks of blocks,

into C or C++ code and pass the code to a compiler targeted to the Windows plat-

form to generate binary file. The binary file is then modified to adapt for the xPC

Target and compressed for a smaller file size. The compressed binary is finally down-

loaded and loaded to the xPC Target PC automatically via ethernet and ready to be

executed.

The controller for the experiment is developed in Simulink and is identical

to the one used in simulation. The only difference to the simulation model is the

simulated system dynamics block is replaced by sensor input blocks and motor output

blocks.

The analog input and output for the system is fulfilled with Quanser Q4 multi-

functional data acquisition card. The driver for Q4 is included in xPC Target package

and using ports of the card is as simple as dragging in Simulink blocks. Q4 card has

four -10V to 10V range 14-bit analog input ports, four programmable range (-10 to

10V, 0 to 10V or -5 to 5V) 14-bit analog output ports, sixteen digital I/O chan-

nel, four quadrature encoder input ports and two PWM output ports. Additional

information about Q4 card can be found in [26].

4.2 Experiment Results

The Linearized Position Controller and the Position Tracking Controller are

compared for performance. Test trajectories include a rate limited set points signal

and a sinewave signal. A specially designed sinewave signal is also shown to be able

to control the ball angle in open loop. Results of physical system are also compared

with simulation and the validness of the modeling is revealed.

50

0 10 20 30 40 50 60 70

0

0.1

0.2

0.3

0.4

0.5

Time (sec)

x
(m

)

Reference Trajectory
Experiment Result
Experiment Tracking Error
Simulation Result
Simulation Tracking Error

Figure 4.9: Results of Nonlinear Tracking Controller following a series of set points
from simulation and experiment.

4.2.1 Set Points Trajectory

The set points trajectory starts from the lowest end of the game board and

goes up through a series of set points, frow low to high at 50 mm, 100 mm, 150

mm, 200 mm, 300 mm. The reference signal is rate limited to 50mm/s to prevent

discontinuities in the reference signal. The gains of the Position Tracking Controller

are set to kp = 3.3 and kd = 2.4. Results of experiment and simulation are compared

in Fig. 4.9, where behavior of both systems matches closely. The steady errors of

the physical system at all set points are below 5 mm, but they do not converge to

zero, potentially due to interference from static friction when the velocity of the ball

is almost zero.

4.2.2 Sinusoidal Trajectory

The sinusoidal trajectory began from the lower end of the game board, ramped

up to 200 mm at a rate of 25 mm/s and stayed there for a few second while the ball

51

0 5 10 15 20 25 30 35
−0.05

0

0.05

0.1

0.15

0.2

Time (sec)

x
(m

)

Simulation Result
Simulation Tracking Error
Experiment Result
Experiment Tracking Error
Reference Trajectory

Figure 4.10: Results of Position Tracking Controller following sine wave trajectory
from simulation and experiment.

settled, then oscillated in a sinusoid around point 160 mm with 5s period and 40 mm

amplitude. The oscillation started at π/2 initial phase, and the whole reference curve

was smooth. The PD gains of the Position Tracking Controller were manually tuned

to kp = 1.5 and kd = 6.0 for better performance, measured in terms of the integrated

squared error over the sinusoidal part. Fig. 4.10 shows the output of the physical

system compared to simulation with the same controller. The error was always small

and the physical system acted very similarly to its simulated counterpart. During the

ramp, the maximum error was 12.5 mm. During the sinusoid, the error was bounded

by ±10 mm. This error was mostly due to phase shift from the reference trajectory.

The amplitude of the sinusoid was close to the reference in both the experiment and

simulation.

52

0 5 10 15 20 25 30

0

250

500

750

1000

1250

1500

Time (sec)

β
(d

eg
re

e)

0 5 10 15 20 25 30

−0.05

0

0.1

0.15

0.2

0.25

0.3

x
(m

)

Trajectory of x

Measured β
Simulated β
Difference in β

β drifts up

x remains
 steady

Figure 4.11: Demonstration of the nonholonomic property of the system in simulation
and experiment.

4.2.3 Demonstration of Nonholonomic Behavior

Shoot-the-Moon is a simple two degree-of-freedom system with a nonholonomic

constraint. The nonholonomic behavior was demonstrated (Fig. 4.11), by oscillating

the ball position x while observing ball angle β. The system was commanded to follow

a sinusoidal trajectory similar to the previous experiment. The sinusoid, centered at

150 mm, had amplitude 30 mm and period 4 s.

Note that the peaks of the ball angle β trended upward while the position x

repeated the same pattern, demonstrating a characteristic feature of a nonholonomic

system [2]. At the end of the fourth cycle, β has increased by 150◦ even though

x has returned to the same value. This is analogous to how a car, another typical

nonholonomic system, can parallel park by cycling the control inputs appropriately.

β was also simulated at the same time using the system model and measurement of

x, ẋ and θ. The simulated value was very close to the measurement. The difference

53

between measured and simulated β was within ±20◦ during the initial ramp, ±10◦

during the plateau, and ±45◦ during the sinusoid. The increased difference during

sinusoid tracking is almost entirely due to a small phase difference between the curves,

corresponding to measured β lagging simulated β by approximately 0.05s. This lag

may be largely attributed to the slower update frequency of the camera used to

measure β. Measured and simulated β match very well, especially considering that β

is integrated from other signals and slight model mismatches could cause measured

β to diverge significantly from simulated β.

Results of this test exhibited the accuracy of the model, especially in that

it successfully captured the nonholonomic constraint of the Shoot-the-Moon system.

Using the model, methods from nonholonomic control theory could be applied to

design trajectories that achieve an arbitrary combination of x and β and the desired

results should be reproducible on the physical system.

54

Chapter 5

Conclusions

In this thesis, the dynamics of Shoot-the-Moon, which had not previously ap-

peared in the literature by others, were derived following classical Lagrangian and

Newtonian approaches. The dynamics are nonlinear, underactuated, and nonholo-

nomic. In fact, since a system requires at least two degree-of-freedom to have a non-

holonomic constraint, Shoot-the-Moon is one of the simplest nonholonomic systems

possible.

Two ball linear position controllers were designed based on the dynamics

model. The Linearized Position Regulator was developed using a local linearization

at equilibrium points of the dynamics. The Position Tracking Controller took non-

linearities into account by inverting the significant nonlinear terms in the dynamics

so that the system appears linear at the input and can be controlled using a PD con-

troller. Simulations of these two controllers showed satisfying results, the Linearized

Position Regulator was able to drive the ball to setpoint from nearby locations and

the Position Tracking Controller could track ramp and sinusoid desired trajectories.

An experimental platform was developed to validate the Position Tracking

Controller performance on physical Shoot-the-Moon game board. Design of the plat-

55

form was described in sufficient detail for later reconstruction or replication of the

system. The experimental results match very closely with simulation, validating the

modeling assumptions made in deriving the dynamics and designing the controllers.

The nonholonomic constraint between the linear and angular position of the ball was

observed in simulation and experiment. Nonholonomic control techniques could be

applied to design trajectories that would guide the ball to a desired arbitrary combi-

nation of linear and angular positions.

Shoot-the-Moon is a tabletop game that appeals to a broad audience. The

dynamics could serve as a useful educational example of a nonholonomic system.

The experimental platform is simple and can be constructed at low-cost. The system

would be suitable as a challenge problem for nonholonomic controls techniques or as

a classroom example or laboratory exercise in applied controls techniques.

56

Appendices

57

Appendix

Appendix A CAD Drawing of the Mechanism

Shown in Fig. A.1 is the CAD drawing of the timing-belt rod driving mech-

anism. The drawing is consist of three parts. The bigger two pieces are front and

back plates of the mechanism, with round holes for shafts (marked by blue cicles) and

screws to go through. The small piece, which are duplicated 6 times during produc-

tion, is sandwiched between the front and back plates in order to maintain parallelity

and a proper distance between the two plates. The teeth-like structure on the small

piece are going into pre-cutted rectangle slots on the plates to increase rigidity of the

entire mechanism. Driving and passive wheels are placed in between two plates, and

is supported by the shafts. A timing-belt was routed around these wheels and was

attached to the rods of the game with metal hoops made from paper clips. All pieces

are cut with 6 mm clear acrylic board.

58

Figure A.1: Timing-belt rod driving mechanism CAD drawing.

59

Bibliography

[1] S. Sastry, The ball and beam example, ser. Interdisciplinary applied mathematics:
Systems and control. Springer, 1999, ch. 10.

[2] A. Bloch, Nonholonomic mechanics and control, ser. Interdisciplinary applied
mathematics: Systems and control. Springer, 2003.

[3] H. Aref, “Toys and games in mechanics education,” in XXI International
Congress on Theoretical and Applied Mechanics, Warsaw, Poland, 2004, pp. 15–
21.

[4] P. Xu, R. E. Groff, and T. Burg, “The rigid body dynamics of shoot-the-
moon game and model-based controller design,” in American Control Conference
(ACC), 6 2010, pp. 396–401.

[5] D. T. Greenwood, Hamilton’s Equation. Courier Dover Publications, 1997, pp.
147–164.

[6] H. Goldstein, C. P. Poole, and J. L. Safko, Variational Principles and Lagrange’s
Equations, 3rd ed. Addison-Wesley, 2001.

[7] R. A. Layton, Lagrangian DAEs of Motion. Springer, 1998.

[8] W. L. Brogan, An Introduction to Nonlinear Control Systems, 3rd ed. Prentice
Hall, 1990, pp. 565–570.

[9] M. Gopal, Physical Systems and State Assignment. New Age International,
1993, pp. 116–118.

[10] H. K. Khalil, The Invariance Principle. Prentice Hall, 2002, ch. 4.

[11] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine
vision metrology using off-the-shelf tv cameras and lenses,” Robotics and Au-
tomation, IEEE Journal of, vol. 3, no. 4, pp. 323–344, 1987.

[12] J. Heikkila and O. Silven, “A four-step camera calibration procedure with im-
plicit image correction,” in Computer Vision and Pattern Recognition, 1997.

60

Proceedings., 1997 IEEE Computer Society Conference on. IEEE, 1997, pp.
1106–1112.

[13] Z. Zhang, “Flexible camera calibration by viewing a plane from unknown orien-
tations,” in iccv. Published by the IEEE Computer Society, 1999, p. 666.

[14] M. Sonka, V. Hlavac, and R. Boyle, Region-based shape representation and de-
scription. Thompson Learning, 2008, pp. 351–370.

[15] T. Acharya and A. K. Ray, Karhaunen-Loeve Transfrom or Principal component
analysis. Wiley-Interscience, 2005, pp. 73–78.

[16] P. Kirn. (2009, Aug.) Trick out your ps3 eye webcam, best cam for vision,
augmented reality. [Online]. Available: http://createdigitalmotion.com/2009/
08/trick-out-your-ps3-eye-webcam-best-cam-for-vision-augmented-reality/

[17] J. Bouguet. (2011, Jul.) Complete camera calibration toolbox for matlab.
[Online]. Available: http://www.vision.caltech.edu/bouguetj/calib doc/index.
html

[18] J. Fryer and D. Brown, “Lens distortion for close-range photogrammetry,” Pho-
togrammetric Engineering and Remote Sensing, vol. 52, no. 1, pp. 51–58, 1986.

[19] D. Brown, “Close-range camera calibration,” Photogrammetric engineering,
vol. 37, no. 8, pp. 855–866, 1971.

[20] A. Godse, Colour Models. Technical Publications, 2009.

[21] Y. Ohta, T. Kanade, and T. Sakai, “Color information for region segmentation,”
Computer graphics and image processing, vol. 13, no. 3, pp. 222–241, 1980.

[22] I. Omer, “Image specific color representation: Line segments in the rgb his-
togram,” Master’s thesis, School of computer science and engineering, The He-
brew University of Jerusalem, Israel, 2003.

[23] I. Gupta, Embedded Realtime Systems Programming. McGraw-Hill, 2003.

[24] R. Mall, Real-Time Systems: Theory and Practice. Prentice Hall, 2009.

[25] Wikipedia. (2011) List of real-time operating systems. [Online; accessed 2-
July-2011]. [Online]. Available: http://en.wikipedia.org/wiki/List of real-time
operating systems

[26] Q. C. Inc. (2003) Q4 data acquisition system user’s guide. [On-
line]. Available: http://www.clemson.edu/ces/crb/ece495/References/manuals/
quanser q4 manual.pdf

61

http://createdigitalmotion.com/2009/08/trick-out-your-ps3-eye-webcam-best-cam-for-vision-augmented-reality/
http://createdigitalmotion.com/2009/08/trick-out-your-ps3-eye-webcam-best-cam-for-vision-augmented-reality/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://en.wikipedia.org/wiki/List_of_real-time_operating_systems
http://en.wikipedia.org/wiki/List_of_real-time_operating_systems
http://www.clemson.edu/ces/crb/ece495/References/manuals/quanser_q4_manual.pdf
http://www.clemson.edu/ces/crb/ece495/References/manuals/quanser_q4_manual.pdf

	Clemson University
	TigerPrints
	8-2011

	Dynamics and Control of the Shoot-the-Moon Tabletop Game
	Peng Xu
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	The Shoot-the-Moon Game
	Previous Work
	This Work
	Impact of this Research

	Model Development
	Preliminaries and Notation
	Assumptions
	Kinematics
	Dynamic Model by the Lagrangian Approach
	Dynamic Model by the Newtonian Approach

	Controller Design
	Linearized Position Regulator
	Augmented Linearized System
	Nonlinear Controller
	Simulation
	Conclusion

	Experiment Testing
	Experiment System Architecture
	Experiment Results

	Conclusions
	Appendices
	CAD Drawing of the Mechanism

	Bibliography

