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A computer program has been developed for fitting EPR data
with multiple free radicals as formed in biochemical and chemical
spin-trapping systems. Simulation of these spectra requires as
many as 40 independent parameters, creating a chaotic analysis
environment. Accurate simulation of these systems is essential
for correct identification of the free radicals, which often show
only slight differences in spin-Hamiltonian parameters. This
method consists of rule-based perturbations with trial and error
calculations and has proven successful in several applications.
Details of the algorithm, example data, and a discussion of the
difficulties of this analysis are presented in this report. o 1994

Academic Press, Inc.

INTRODUCTION

Spin trapping has proven very useful in the analysis of
free radicals in biological samples ( /); however, the simple
molecular structure of a spin trap does not always lead to
an easy analysis of the resultant EPR spectra. In biochemical
systems, we frequently find that several independent free-
radical species are trapped, leading to a superposition of very
similar spectra. These species will often show only slight de-
viation of the critical hyperfine coupling constants (hcc),
which are further obscured by the relatively wide detected
linewidths. The ensuing analytical frustration has led us to
develop a computer program for refining hypothetical sim-
ulation parameters to optimal values, allowing the researcher
to test various possible free-radical formation pathways in a
relatively unbiased manner. This program has been used in
publications from this laboratory.

CALCULATIONS

Individual simulations are calculated using the coefficients
of the Fourier-transform (FT) spectrum (2, 3). The effects
of the experimental modulation amplitude and time constant
are included. In addition, we have included independent
linewidth calculations for the M = —1, 0, +1 states of the
nitrogen nucleus. The resulting equation has the form

J K
FI,= M;T; > [RN;; [T Hyjuls [1]

j=1 k=1

105

where the Fourier frequency franges from 1 to #/2 (n =
number of data points), J is the number of free-radical spe-
cies, K; is the number of independent hyperfine coupling
nuclei within each species, and R; is the relative amplitude
of each species. The modulation amplitude and time constant
are described by Eq. [2] and [3], respectively,

[2]
(3]

M= sin(fam/A)/(f)
Ty= (¢/s)[1 — 2xf(2/5))/ {[27(2/5)]* + 1},

where A is the scan range in gauss, m is the modulation
amplitude, ¢ is the time constant, s is the scan time, and
I = V—1. The nitrogen hyperfine term has the form

Nj= 2 (4]

g=-1,0,1

[(Lyq+ Grjg)Ar 6l

which is detailed by the equations

Ly, = Pf exp(—2=mfw;,/A) [4a]
Grq = (1 — P)f exp[—(27fw;,)?/ A] [4b]
As, . =expl—i2xf(A/2 — g ~ gx))], [4c]

where P; is the percentage Lorentzian component, w;, is the
linewidth at each quantum number, g; is the g value mea-
sured as the offset from the center of the spectrum in gauss,
and x; is the nitrogen splitting in gauss. The remaining hy-
perfine terms are represented by the following equations with
a;; as the hyperfine splitting in gauss:

Hp i = cos(mfa;e/A), spin 1/2 [5]
Hyjx = (2/3)[cos(2afa;,/A) + 1/2], spin | [5a]
Hyju = (3/2)[cos(2nfa;i/ A) + cos(3afa;/ A)],

spin 3/2. [5¢c]

Equations [2] and [ 3] are constants for any single exper-
iment and do not figure into the optimization complexity.
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The continuous-wave simulation is achieved by a simple in- EFT = FFT![CW] (8]
verse fast Fourier transform (FFT), followed by the error w2
calculation: Error = 3 [EFT,— FT,)2. 9]
f=1
CW = FFT!{(FT) [6]
" In the FT representation, Eq. [1], both the real and the
Error = Y [exp,— CW,]°. [7) imaginary components have significant intensities, while in
=1 the CW representation, Eq. [6], only the real component is

significant. Equations [1]-[9] illustrate the challenging na-
We can also minimize the error function in the FT domain: ture of optimizing these systems. To correctly simulate a

[Set largest perturbation size |

I

For j=1t0 ]

| Adjust_Parameter( a,, ... a,, ) 14

rAdjﬁt_Parameter( X ) ]

rAdjlust_Pammcter( Wy o Wy W )|
Adjust_Parameterl K. ) |

{4 Adjlust_Paxametex( P) ]

perturbation

size less than

resolution
?

Adjust_Parameter( P, ... P, )

o o

P, = Rpenturbation
Ermor,= Calc_emor( P, )
P. = P, - perturbation
Emor,= Calc_error{ P, )

Save_best( Error,, , Error, )-I

ISave_best( Emor, ... Emor, , Error,., ) l

Retum

FIG. 1. Flow diagram of the LMBI1 algorithm. The parameters are labeled as in the text under Methods. The number of free radical species is denoted
by J. The program starts with a chosen large perturbation, adjusts each parameter individually, and calculates the new simulation and error value, repeating
this process until the perturbation has been reduced to the spectral resolution (scan width/number of data points).



SIMULATION OF SPIN-TRAP EPR SPECTRA

spectrum, we must minimize Eq. [ 7] or [9] for the following
variables for each of the J number of radical species: the
nitrogen splitting constant x;, the additional splitting con-
stants, a;,, the relative intensity of each species, R;, the g
value, g;, the Lorentzian content of the lineshape, P;, and
the nitroxide linewidths, w;,. In biochemical systems, as
many as five radical species have been observed, giving rise
to 40 or more parameters to be optimized. This multidi-
mensional error surface presents a challenging task to any
minimization function; most of the local minima into which
an algorithm can fall do not correspond to any viable chem-
ical possibility. Many of the conventional minimization
routines use derivative calculations to quickly descend the
local minima structure; these derivatives are costly to com-
pute and restrict the global search area. Any optimization
of more than a few parameters requires careful selection of
the initial quantities, regardless of the technique used.

METHODS

Our method of optimizing the simulation, LMBI1, evolved
from an algorithm previously published, TUNE (4), for op-
timizing the simulation of a single free radical with a complex
spectrum. LMBI is specifically designed to optimize esti-
mated spin-Hamiltonian parameters describing each spin
adduct in a multicomponent spin-trap spectrum. It works
equivalently in either the CW or the FT domains and at-
tempts to treat Eq. [7] or [9] as an single quantity, rather
than a combination of smaller functions for each radical
species. LMBI1 simply iterates through the spectral param-
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FIG. 2. Noise distribution from an EPR spectrometer with typical set-
tings, taken at low magnetic field to avoid resonance signals. Spectrometer,
Bruker ER200; sample, strong pitch; field center, 1000 G; scan range, 60
G; microwave power, 10 dB; receiver gain, 1 £ + 6; time constant, 1.25 ms;
scan time, 10 min; modulation amplitude, 0.5 G. Gaussian fit is also shown
with mean = 5.33 and standard deviation = 4.10.
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TABLE 1
Results of Fitting DMPO/OH and DMPO/OOH
Composite Spectrum

Signal-to-noise ratio

S 10 50
Actual LMBI results
value u [ m [ u [
‘OH
aN 15.30 15.28 0.006 15.28 0.020 15.29 0.029
aHI 1530 15.32 0.016 14.84 1.010  15.34 0.137
aH2 0.61 0.61 0.003 0.66 0.007 0.6l 0.008
aH3 0.25 0.14 0.091 0.6l 0.866 0.24 0.037
‘OOH
aN 1430  14.30 0.003 14.29 0.036 14.30 0.005
aH1 11.70  11.70 0.005 11.70 0.007 11.70 0.007
aH2 1.25 1.24 0.005 1.24 0.006 1.25 0.010
R 0.957 0.983 0.999
n 940 949 725
Simplex results
13 a I a I o
‘OH
aN 15.29 1529 0.035 15.28 0.045 15.29 0.007
aHl1 15.30 1531 0.108  15.35 0.104 15.30 0.016
aH2 0.63 0.62 0.023  0.64 0.015 0.61 0.008
aH3 0.2§ 0.25 0.018 0.25 0.008 0.26 0.020
‘OOH
aN 1430 14.29 0015 1430 0.005 14.30 0.006
aH|1 11.70 11.71 0.026 11.69 0.016 11.69 0.008
aH2 1.25 1.24 0.016 1.24 0.022 1.26 0.002
0.956 0.987 0.994
n 920 1129 2003

Note. Results of fitting the DMPO/OH and DMPO/OOH spectrum with
the LMBI and Simplex algorithms for the hyperfine coupling constants
(hce) are shown. Three reference spectra were created with S/N values of §,
10, and 50 using a Gaussian noise-generating function. Four starting param-
eter sets were generated with initial parameters created as a Gaussian dis-
tribution with ¢ = true_value and ¢ = 0.05 (true_value). The hcc-fitted
mean (u) and standard deviation (o) are shown at each S/N ratio, although
the linewidth, lineshape, g value, and relative concentration parameters were
also fitted. Also shown is the average rank correlation constant (R) of the
final simulations and the average number of calculations (#) needed at each
S/N ratio.

eters, creating trial simulations and error calculations starting
with large perturbations and ending with small perturbations.
Its main points are: (i) the order of parameter testing is de-
termined by the likely magnitude of its effect on the final
spectrum fit; (ii) only a single parameter is varied at once;
(iii) no parameter is changed more than once before all other
parameters are tried; (iv) any parameter can be held constant;
(v) the routine exits when all parameters have been tested
at the best resolution; and (vi) any given combination of
initial parameters and experimental spectrum will always
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produce the same result. The complete algorithm is presented
in Fig. 1. LMBI1 is not based on a standard numerical “rec-
ipe” with interpolations and derivatives and, as such, could
not be applied as is to other problems, although analogous
procedures could be devised.

For comparison, we show the well-known Simplex (5)
method of functional minimization. Simplex is a nonderi-
vative-based algorithm that performs a multidimensional
interpolation of all parameters at each iteration, in contrast
to LMBI. If P is the number of parameters to be optimized,
then Simplex requires P + 1 initial simulations with differing
parameter sets. After choosing initial parameters, we generate
the remaining P starting sets as Gaussian ( normal) deviates,

par, ; = N(u = par,;, o = 0.05 par, ), [10]
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where p (1 < p < P) is the parameter number, and s (2 < s
< P + 1) is the Simplex perturbation number. The actual
deviations are generated by a published (6) Gaussian random
number generator. Notice that, since this Simplex is a func-
tion of a random numbers, a given combination of initial
parameters and data set will not produce identical output.
Simplex exits when a predefined fractional tolerance (ftol)
has been achieved. Typically, a Simplex is reinitialized and
restarted after ftol has been met a few times before a final
tolerance is accepted. The ftol is defined in Eq. [11], where
max and min are both retrieved from an array of the P + 1
best errors.

ftol = 2|max — min|/(|max| + |min}).

(11]
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FIG. 3. Continuous-wave (CW) and Fourier-transform (FT) fit results for the five-species, 40-parameter model with the final correlation constant
(R) and number of calculations (n). Both the CW and the FT results are shown. The FT is defined as FT = FFT(CW). (A) CW experimental spectrum;
scan range, 80.0 G; data points, 2048; resolution, 0.04 G/point. (B) CW-LMBI final simulation; R = 0.994; n = 5457. (C) CW-LMB residual spectrum.
(D) CW-Simplex final simulation; R = 0.987; n = 8270. (E) CW-Simplex residual. (F) FT experimental spectrum, shown as the first 128 data points of
both the real and imaginary domains although the resolution remains 0.04 G /point. (G) FT-LMBI! final simulation; R = 0.993; n = 3601. (H) FT-LMB1
residuals. (1) FT-Simplex final simulation; R = 0.986, n = 8597. (J) FT-Simplex residuals.
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RESULTS

A measured CW EPR spectrum should be the sum of the
actual signal and normally distributed noise with mean and
variance dependent on the spectrometer settings.

exp=CW +¢ €~ N(ug, gp). [12]
In fact, baseline data acquired from our instruments dem-
onstrates this relationship, as shown in Fig. 2. Given the
normal distribution of acquired data, the spin-Hamiltonian
parameter estimates resulting from a numerical fit should
have their own normal distributions; using repetitive trials,
one can produce estimates of the parametric means and
standard deviations. Without repetitive trials, this is a difficult
estimation.

The first example is of the (5,5-dimethyl-1-pyrroline N-
oxide) DMPO/*OH and DMPO/‘OOH composite spectrum
with parameters published by Bolton (7). A noise pattern
with a normal distribution (g = 0.0, ¢ = 1.0) was created
and a simulated signal added at intensities 5, 10, and 50,
creating those signal-to-noise (S5/N) ratios. The spectrum
width consists of 60 G over 2048 data points, yielding a
resolution of 0.03 G/point. This test used a constant line-
width. Four sets of initial parameters were then created with
deviations distributed normally [u¢ = true_value, ¢ = 0.05
(true_value)] to test the program at each S/N ratio with
both the LMBI1 and the Simplex routines. Table | sum-
marizes the 24 sets of results: the mean and standard devia-
tions at each S/ N are generally good and positively identify
the radical spectra. The average correlation constant at each
S/ N is quite good. While the accuracy improves as the S/ N
increases for both methods, the programs are usually able
to extract the correct parameters even with bad inputs and
poor signals.

The second example shows data recently published (8)
involving a very complex five-species, 40-parameter spectrum
of the ( N-t-butyl-a-phenylnitrone ) PBN spin trap that dem-
onstrates significant nitrogen quantum-dependent line-
widths, poor resolution of hyperfine features, and a deviant
baseline. The spectral width is 80 G over 2048 data points,
yielding a resolution of 0.04 G/point. The spectrum was
fitted using both the LMBI and Simplex methods, producing
apparently good results, as shown in Fig. 3; however, the
LMBI algorithm produced somewhat better correlation val-
ues in fewer iterations. Also, the spectrum was modeled as
both CW and FT data and while the number of iterations is
comparable between the CW and FT tests, the more efficient
calculations of the FT jobs produces run times an order of
magnitude shorter (using Eqgs. [1]-[9]), a value that is in-
dependent of the computer used. The final parameters (Table
2) show deviations between the CW and FT domains and
between the LMBI1 and Simplex methods with the radical
assignments based on the hyperfine coupling constant results
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TABLE 2

Fitting Results for the Five-Species/40-Parameter
PBN Spectrum

CW-LMB! CW-Simplex FT-LMB! FT-Simplex

"3CH3

Concentration 53.000 40.323 49.000 41.090

aN 16.407 16.128 16.378 16.060

aH 3.360 3.474 3.473 3.456

aH 4.000 4.266 3.955 4.048
‘O "*CH,

Concentration 32.000 36.925 36.000 25.536

aN 15.635 15.745 16.085 15.599

aH 3.060 3.292 2.827 3.004
Y

Concentration 22.000 11.196 36.000 12.115

aN 15.325 15.468 14.980 15.447
‘C(O)R

Concentration 2.500 2.511 3.000 2.103

aN 15.766 16.641 15.444 15.550

aH 3.360 2.947 3.995 4.371
‘COz

Concentration 1.500 0.952 1.000 1.342

aN 15.719 14.621 16.002 15.571

aH 4.360 4.230 4.096 5.746

Note. Resulting parameter estimates for the example PBN spectrum using
both the LMBI and the Simplex algorithms in both CW and FT domains
are shown. The model included five free radical species, each with a relative
intensity, isotropic g value, three linewidths for the —1, 0, +1 quantum
nitroxide states, and hcc for a total of 40 independent parameters for fitting.
Only the relative concentration and critical hyperfine coupling constants
are shown although the linewidth, lineshape, g value, and relative concen-
tration parameters were also fitted. A wide deviation in the hce estimates is
demonstrated between the LMBI1 and Simplex as well as between the CW
and FT domains. These values were corroborated with the Spin Trap Data
Base (see text); the CW-LMBI results were used in the given assignment of
parameters.

of the LMBI1 algorithm applied to CW data. Hyperfine cou-
plings from the alternate fits show differences as large as ~ 1
G, which are significant enough to alter interpretation. To
investigate this dilemma, we searched the Spin Trap Data
Base ( 9) for the highly characteristic PBN /*CO; radical ad-
duct (clearly evident in other spectra but not in Fig. 3A)
with the range of a™ and a" set to the fit result +0.3 G. The
interval was chosen to be large enough to include normal
parameter deviation while excluding most alternative hy-
potheses and is significantly larger than the resolution of the
experiment. The CW-LMBI result yielded 31 references;
CW-Simplex, 0; FT-LMBI, 1; and FT-Simplex, 0. These
results imply that the CW-LMBI fit is most believable. Line-
width and lineshape results are not appropriate for radical
identification; however, badly erroneous values may point
to useless simulations. The paradox of apparently excellent
fits producing competing assignments illustrates the com-
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plexity of the task and the necessity of exhaustive experi-
mentation with extensive analysis. That said, we note that
the chosen simulation did in fact produce a higher correlation
constant and better residual distribution.

DISCUSSION

The LMBI algorithm has proved itself to be very useful
in our work, eliminating many tedious hours of simulation
refinement. These programs provide a research tool for test-
ing one hypothesis versus another, using error estimates and
published data such as the Spin Trap Data Base. With a very
complex spectrum of many species, these programs can
eliminate a poorly chosen hypothesis; however, results are
very dependent on initial parameters. Therefore, the re-
searcher must be able to produce credible models and use
optimization programs as hypothesis testers. In particular,
refinement along the lineshape-linewidth grid is difficult;
fortunately, these parameters are not usually critical to the
identification of the radical. The researcher retains respon-
sibility for discriminating between competing models on the
basis of his or her own knowledge of the field. No data-
analysis technique is a substitute for a good understanding
of the chemistry underlying the experiment. Finally, although
results from the Simplex algorithm were reported, this report
is not intended as a comparison, but rather to establish the
LMBI algorithm as a legitimate and convenient means of
analyzing EPR spectra.

DULING

AVAILABILITY OF COMPUTER PROGRAMS

Versions of these programs compiled for the IBM PC-
compatible DOS computer are available electronically and
by surface mail; the author may be contacted for details.
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