Incomplete combustion...

Complete combustion...

The products of incomplete combustion are CO₂ (g), CO (g), and C (s).

Wood/sugar

$$C_6H_{12}O_6$$
 (s) + 3 O_2 (g) \rightarrow 6 CO (g) + 6 H_2O (l)

 ΔH_{comb} =

$$C_6H_{12}O_6$$
 (s) + 4 O_2 (g) \rightarrow 3 CO_2 (g) + 2 CO (g) + C (s) + 6 H_2O (I)

Methane

$$2 \text{ CH}_4 (g) + 3 \text{ O}_2 (g) \rightarrow 2 \text{ CO } (g) + 4 \text{ H}_2 \text{O } (l)$$

 ΔH_{comb} =

$$4 \text{ CH}_4 (g) + 5 \text{ O}_2 (g) \rightarrow 2 \text{ CO } (g) + 8 \text{ H}_2 \text{O } (l) + 2 \text{C } (s)$$

Propane

Problem:

Brad's "home heating system" question…I collect ½ gal of water per day when the outside temperature is $^{\circ}50$ °F (10 °C).

- a) how much natural gas (ie. methane) do i consume per day?
- b) how much heat was required to keep my home at 68 °F (20 °C)?

