## **Physical Chemistry I: Thermodynamics**

Name \_\_\_\_\_

Chapter 4 homework; Heating your home.

Maintaining the temperature inside of a space/home is one modern convenience that quickly became a necessity. The general term used to describe the control of temperature in a home is called, **HVAC** or **H**eating, **V**entilation, and **A**ir **C**onditioning. Although many homes do not have a central cooling system (commonly called just "AC") very few are without a means to heat.

The following fuel used to heat spaces:

**Wood**: Wood has a molecular formula that can be approximated by a simple sugar ( $C_6H_{12}O_6$ ). Write below the balanced combustion reaction for  $C_6H_{12}O_6$ :

$$C_6H_{12}O_6$$
 (s) +

Using the heats for formation ( $\Delta H_f$ ) calculate the enthalpy of combustion ( $\Delta H_{comb}$ ) for C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>:

$$\Delta H_f$$
 (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> - solid) =

$$\Delta H_f$$
 (O<sub>2</sub> - gas) =

$$\Delta H_f$$
 (CO<sub>2</sub> - gas) =

$$\Delta H_f$$
 (H<sub>2</sub>O - liquid) =

$$\Delta H_{comb} =$$

Answer ~ -2808 kJ/mol [for H<sub>2</sub>O (I)]

Natural Gas: Natural gas is found in deposits around the world. This gas consist of methane (~95%) with the balance being mainly ethane (~4%). Natural gas is piped directly to homes/businesses just like water. Write below the balanced combustion reaction for CH<sub>4</sub>:

$$CH_{4}(g) +$$

Using the heats for formation ( $\Delta H_f$ ) calculate the enthalpy of combustion ( $\Delta H_{comb}$ ) for CH<sub>4</sub>:

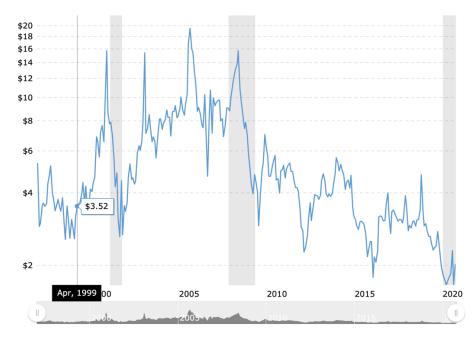
$$\Delta H_f$$
 (CH<sub>4</sub> - gas) =

$$\Delta H_{comb} =$$

**Propane**: Propane ( $C_3H_8$ ) can be extracted from natural gas (only ~0.2%) or recovered during the refining of petroleum/gasoline. Liquified propane gas (under pressure) is stored in horizontal, *pill-shaped* tanks or in small "gas-grill" cylinders. Write below the balanced combustion reaction for  $C_3H_8$ :

$$C_3H_8(g) +$$

Using the heats for formation ( $\Delta H_f$ ) calculate the enthalpy of combustion ( $\Delta H_{comb}$ ) for C<sub>3</sub>H<sub>8</sub>:  $\Delta H_f$  (C<sub>3</sub>H<sub>8</sub> - gas) =


$$\Delta H_{comb} =$$

Answer ~ -2220 kJ/mol

## Summary:

| Fuel    | $\Delta H_{comb}$ (kJ/mol) | $\Delta H_{comb}$ (kJ/gram) | Cost/gram |
|---------|----------------------------|-----------------------------|-----------|
| Wood    |                            |                             |           |
| Methane |                            |                             |           |
| Propane |                            |                             |           |

Example: Cost of natural gas over the past 30 years...

