10/24/2016

The purpose of this week's experiment is to determine the EPR spectrum's dependency on the angle of the Co-60 irradiated sugar crystal. These spectra will be compared to the powder spectrum collected 10/17/2016.

Figure 1. Co-60 irradiated sugar crystals were ground with mortar and pestle and analyzed by EPR with the conditions listed above. Date collected: 10/17/2016

Analysis of sample

Figure 2. A single crystal of Co-60 irradiated sugar was taped to the outside of an EPR tube and analyzed at 0° \rightarrow 90° rotation in 10° increments with the operating conditions as listed below.

All following spectra of this document were collected with the following parameters:

Freq = 9.42079 GHz	SwWid = +/- 10 mT	Amp = 1
Power = 1.02 mW	SwTime = 8 min	Time C = 0.3 s
CF = 336.0 mT	Mod Wid = 0.1 mT	# Data Points = 2048

Figure 3. Compilation of EPR rotation spectra from $0-90^{\circ}$ in 10° increments with the operating conditions as listed above. The degree of rotation along the x-y plane was set as shown by the setup in Figure 2.

Figure 3. Compilation of EPR spectra of 0° and 45° rotations along the y-z plane with the operating conditions as listed above. The degree of rotation along the x-y plane was roughly estimated by removing the taped crystal from the EPR tube, rotating it along the y-z plane, and re-taping the crystal.

Conclusions:

There is no difference between the spectra of the sample as it is rotated or between the single crystal spectra and powder spectrum, therefore the sugar crystal is not a perfect, single crystal.

Individual Spectra from the compilations:

