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Figure 2: Cytochrome P450s are able to carry out two 1e- oxidations
in addition to the commonly accepted one 2e- oxidation as illustrated
to the left. This oxidation can be modeled using Horseradish
peroxidase or electrochemical methods as shown below.

Figure 1: Current literature supports a toxicological mechanism of APAP
overdose via a net 2e- oxidation of APAP into the deleterious metabolite,

NAPQI.
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Motivations

Acetaminophen (APAP) is a common analgesic and

an active ingredient in many painkillers such as o
Tylenol and Percocet. Upon overdose, APAP can Q o
>/-7CH3

lead to toxicity in the liver, which accounts for a
striking proportion of acute liver failures in the United
States annually. Considering the potential for APAP
Induced hepatotoxicity, our research group has
analyzed APAP and its tendency to oxidize into
reactive products through in vitro enzymatic
methods, which were visualized through HPLC.
Characterization of these APAP oxidation products
were carried out using ESR, ESI-MS/MS, and H-
NMR. Our findings provide structural insight into
potentially deleterious APAP oxidation metabolites
formed early in the liver during times of APAP
overdose via a mechanism of radical polymerization.
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Metabolite Purification

Figure 4: A) Detection of the APAP radical using an immobilized enzyme ESR flow method. The ESR spectra
were collected using HRP covalently bound to AquiGel beads within a flat cell, 2mM APAP, 1mM H202,
phosphate-citrate buffer (pH 5), 1 mL/min flow rate on a Bruker EMX spectrophotometer with an SHQ
resonator (10 mm flat cell) operating at 9.8 GHz, 20 mW microwave power, 60 Gauss sweep width, and 0.5
Gpp modulation amplitude (100KHz). B) Spectrum A simulated using WINSIM software. C) Spectrum B with
the broad polymeric radical signal (species 2) mathematically removed. D) Spectrum B with the species 1

signal mathematically remaining.

Computational Mapping

and ortho positions.

Figure 5: Electron density map of the acetaminophen radical using . The color corresponds with
electron density in the order of blue > green > yellow > orange > red. The map is consistent with
experimental ESR data concerning the preference of the lone electron to spend its time at the phenoxy
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Conclusions

The resulting metabolite formation following acetaminophen overdose
and subsequent oxidation via Cytochrome P450 enzymes is
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Future in vivo studies will need to occur in order to determine the roles
these metabolites play in pathophysiology.

diAPAP =1 mM
H202 = 0.5 mM
flow rate = 0.50 mL/min

Figure 9: Detection of the
diAPAP (metabolite A) radical
using an immobilized enzyme
ESR flow method as described
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Figure 7: Metabolites were isolated utilizing a flash chromatography system from a scaled-up
APAP/H202/HRP reaction mixture (black) containing 50 mM APAP, 25 mM H202, and 9.7 nM HRP.
Separation was achieved through a linear gradient beginning at 100% solution A to 100% solution B over
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phase HPLC shows one distinct product
peak while normal phase HPLC shows two

chemically unique product peaks, which
J L indicates a mixture of products.
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The spectrum is zoomed in on the aromatic region.

Figure 12: The H-NMR spectrum of product A (20 mg/mL in DMSO-d6) was obtained using a 400 MHz Bruker NMR spectrometer.
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